搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dzyaloshinskii-Moriya相互作用和内禀消相干对基于两量子比特Heisenberg自旋系统的量子密集编码的影响

邹琴 胡小勉 刘金明

引用本文:
Citation:

Dzyaloshinskii-Moriya相互作用和内禀消相干对基于两量子比特Heisenberg自旋系统的量子密集编码的影响

邹琴, 胡小勉, 刘金明

Effects of Dzyaloshinskii-Moriya interaction and intrinsic decoherence on quantum dense coding via a two-qubit Heisenberg spin system

Zou Qin, Hu Xiao-Mian, Liu Jin-Ming
PDF
导出引用
  • 通过求解Milburn方程, 研究了内禀消相干条件下包含Dzyaloshinskii-Moriya (DM) 相互作用的两量子比特Heisenberg自旋系统实现的量子密集编码最佳传输容量的演化特性, 分析了不同方向DM相互作用、不同初态、各向异性以及内禀消相干因子等参数对最佳编码容量的影响. 研究表明: 初态的选择对系统密集编码最佳传输容量的影响很大, 不同类型初态下密集编码容量的依赖参数不完全相同; 当系统初态处于c|01+ d|10 形式的非最大纠缠时, 引入较弱的DM相互作用z分量可提高最佳编码容量; 相位消相干可抑制最佳编码容量的涨落并使其在长时间演化下趋于稳定. 研究还发现: 内禀消相干下, 通过选取合适的最大纠缠初态, 系统密集编码的最佳传输容量能够保持理想极大值2; 而且无论引入哪个方向的DM相互作用, 基于两量子比特Heisenberg自旋系统的最佳编码容量总可优于经典通信的传输容量.
    By solving the Milburn equation, we investigate the properties of optimal channel capacity for the quantum dense coding via a two-qubit Heisenberg spin system with Dzyaloshinskii-Moriya (DM) interaction in the presence of intrinsic decoherence. The influences of different DM interactions, different initial states, anisotropic coupling parameters, and intrinsic decoherence on optimal coding capacity are analyzed in detail. It is found that the initial state of the system affects optimal coding capacity greatly, whose dependent parameters are not identical for different types of initial states. When the system is initially in the form of the nonmaximally entangled state cft| {01} ightangle + dft| {10} ightangle , a weak z-component DM interaction can enhance the value of optimal coding capacity as compared with the value without DM interaction, and the phase decoherence effect can suppress the oscillation of optimal coding capacity and make the capacity decrease to a stable value for the long-time evolution. It is also found that under the influence of intrinsic decoherence, the optimal transmission capacity of dense coding can keep an ideal maximal value of 2 by choosing the proper initial maximally entangled state. Moreover, no matter from which direction the DM interaction is introduced, the optimal coding capacity via the two-qubit Heisenberg spin system is always larger than the transmission capacity of any classical communication.
    • 基金项目: 国家自然科学基金(批准号: 11174081, 11034002, 11134003, 11104075)和国家重点基础研究发展计划(批准号: 2011CB921602, 2012CB821302)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11034002, 11134003, 11104075) and the National Basic Research Program of China (Grant Nos. 2011CB921602, 2012CB821302).
    [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [4]

    Barenco A, Ekert A K 1995 J. Mod. Opt. 42 1253

    [5]

    Hao J C, Li C F, Guo G C 2001 Phys. Rev. A 63 054301

    [6]

    Zhang J, Xie C D, Peng K C 2002 Phys. Rev. A 66 032318

    [7]

    Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304

    [8]

    Li L Z, Qiu D W 2007 J. Phys. A: Math. Theor. 40 10871

    [9]

    Wang M Y, Yan F L 2011 Chin. Phys. B 20 120309

    [10]

    Horodecki M, Piani M 2012 J. Phys. A: Math. Theor. 45 105306

    [11]

    Yang Y G, Xia J, Jia X, Zhang H 2012 Int. J. Theor. Phys. 51 1917

    [12]

    Quek S, Li Z, Yeo Y 2010 Phys. Rev. A 81 024302

    [13]

    Shadman Z, Kampermann H, Macchiavello C, Bruss D 2010 New J. Phys. 12 073042

    [14]

    Metwally N 2011 J. Phys. A: Math. Theor. 44 055305

    [15]

    Mattle K, Weinfurter H, Kwait P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [16]

    Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904

    [17]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282

    [18]

    Fang X, Zhu X, Feng M, Mao X, Du F 2000 Phys. Rev. A 61 022307

    [19]

    Wang X G 2001 Phys. Rev. A 64 012313

    [20]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [21]

    Wang H, Wu G X 2013 Chin. Phys. B 22 050512

    [22]

    Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602

    [23]

    Yu P F, Cai J G, Liu J M, Shen G T 2007 Eur. Phys. J. D 44 151

    [24]

    Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207

    [25]

    Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 0456

    [26]

    Zhang G F 2008 Phys. Scr. 79 015001

    [27]

    Jiang C L, Liu X J, Liu M W, Wang Y H, Peng C H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 61 170302]

    [28]

    Qin M, Li Y B, Bai Z, Wang X 2014 Acta Phys. Sin. 63 110302 (in Chinese) [秦猛, 李延标, 白忠, 王晓 2014 63 110302]

    [29]

    Abliz A, Gao H J, Xie X C, Wu Y S, Liu W M 2006 Phys. Rev. A 74 052105

    [30]

    Qiu L, Wang A M, Su X Q, Ma X S 2009 Phys. Scr. 79 015005

    [31]

    Cai J T, Abliz A, Bai Y K, Jin G S 2011 Chin. Phys. Lett. 28 020307

    [32]

    Huang H L, Sun Z Y 2014 Appl. Mech. Mater. 446-447 986

    [33]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solid 4 241

    [34]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [35]

    Carmichael H J 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer Verlag)

    [36]

    Li Z G, Fei S M, Wang Z D, Liu W M 2009 Phys. Rev. A 79 024303

    [37]

    Milburn G J 1991 Phys. Rev. A 44 5401

    [38]

    Xu J B, Zou X B, Yu J H 2000 Eur. Phys. J. D 10 295

    [39]

    Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907

    [40]

    Qiu L, Wang A M, Ma X S 2007 Physica A 383 325

  • [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [4]

    Barenco A, Ekert A K 1995 J. Mod. Opt. 42 1253

    [5]

    Hao J C, Li C F, Guo G C 2001 Phys. Rev. A 63 054301

    [6]

    Zhang J, Xie C D, Peng K C 2002 Phys. Rev. A 66 032318

    [7]

    Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304

    [8]

    Li L Z, Qiu D W 2007 J. Phys. A: Math. Theor. 40 10871

    [9]

    Wang M Y, Yan F L 2011 Chin. Phys. B 20 120309

    [10]

    Horodecki M, Piani M 2012 J. Phys. A: Math. Theor. 45 105306

    [11]

    Yang Y G, Xia J, Jia X, Zhang H 2012 Int. J. Theor. Phys. 51 1917

    [12]

    Quek S, Li Z, Yeo Y 2010 Phys. Rev. A 81 024302

    [13]

    Shadman Z, Kampermann H, Macchiavello C, Bruss D 2010 New J. Phys. 12 073042

    [14]

    Metwally N 2011 J. Phys. A: Math. Theor. 44 055305

    [15]

    Mattle K, Weinfurter H, Kwait P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [16]

    Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904

    [17]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282

    [18]

    Fang X, Zhu X, Feng M, Mao X, Du F 2000 Phys. Rev. A 61 022307

    [19]

    Wang X G 2001 Phys. Rev. A 64 012313

    [20]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [21]

    Wang H, Wu G X 2013 Chin. Phys. B 22 050512

    [22]

    Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602

    [23]

    Yu P F, Cai J G, Liu J M, Shen G T 2007 Eur. Phys. J. D 44 151

    [24]

    Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207

    [25]

    Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 0456

    [26]

    Zhang G F 2008 Phys. Scr. 79 015001

    [27]

    Jiang C L, Liu X J, Liu M W, Wang Y H, Peng C H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 61 170302]

    [28]

    Qin M, Li Y B, Bai Z, Wang X 2014 Acta Phys. Sin. 63 110302 (in Chinese) [秦猛, 李延标, 白忠, 王晓 2014 63 110302]

    [29]

    Abliz A, Gao H J, Xie X C, Wu Y S, Liu W M 2006 Phys. Rev. A 74 052105

    [30]

    Qiu L, Wang A M, Su X Q, Ma X S 2009 Phys. Scr. 79 015005

    [31]

    Cai J T, Abliz A, Bai Y K, Jin G S 2011 Chin. Phys. Lett. 28 020307

    [32]

    Huang H L, Sun Z Y 2014 Appl. Mech. Mater. 446-447 986

    [33]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solid 4 241

    [34]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [35]

    Carmichael H J 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer Verlag)

    [36]

    Li Z G, Fei S M, Wang Z D, Liu W M 2009 Phys. Rev. A 79 024303

    [37]

    Milburn G J 1991 Phys. Rev. A 44 5401

    [38]

    Xu J B, Zou X B, Yu J H 2000 Eur. Phys. J. D 10 295

    [39]

    Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907

    [40]

    Qiu L, Wang A M, Ma X S 2007 Physica A 383 325

  • [1] 史猛, 王伟伟, 杜海峰. 基于符号回归方法探索磁性斯格明子结构近似解析式.  , 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [2] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度.  , 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [3] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制.  , 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [4] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性.  , 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [5] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响.  , 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [6] 秦猛, 李延标, 白忠, 王晓. 不同方向Dzyaloshinskii-Moriya相互作用和磁场对自旋系统纠缠和保真度退相干的影响.  , 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [7] 姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖. 内禀退相干下海森伯XY模型中的热纠缠性质及其相干调控.  , 2012, 61(17): 170302. doi: 10.7498/aps.61.170302
    [8] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [9] 张英丽, 周斌. 具有Dzyaloshinskii-Moriya相互作用的四量子比特海森堡XXZ模型中的热纠缠.  , 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [10] 邹维科, 孔祥木, 王春阳, 高中扬. 三维钻石型等级晶格上量子Heisenberg系统的临界性质.  , 2010, 59(7): 4874-4879. doi: 10.7498/aps.59.4874
    [11] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠.  , 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [12] 单传家, 程维文, 刘堂昆, 黄燕霞, 李 宏. 具有Dzyaloshinskii-Moriya相互作用的一维随机量子XY模型中的纠缠特性.  , 2008, 57(5): 2687-2694. doi: 10.7498/aps.57.2687
    [13] 蔡 卓, 陆文彬, 刘拥军. 交错Dzyaloshinskii-Moriya相互作用对反铁磁Heisenberg链纠缠的影响.  , 2008, 57(11): 7267-7273. doi: 10.7498/aps.57.7267
    [14] 郭德军, 单传家, 夏云杰. 内禀退相干下Tavis-Cummings模型中原子的纠缠演化与贝尔不等式破坏.  , 2007, 56(4): 2139-2147. doi: 10.7498/aps.56.2139
    [15] 董林荣. 相互作用herding模型:记忆与遗忘.  , 2006, 55(8): 4046-4050. doi: 10.7498/aps.55.4046
    [16] 谭 霞, 张成强, 夏云杰. 双模场与原子相互作用中的量子纠缠和内禀退相干.  , 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [17] 孔红艳, 张 林, 宋 筠. 混合自旋反铁磁材料Y2BaNiO5的磁学和热力学性质.  , 2006, 55(9): 4865-4872. doi: 10.7498/aps.55.4865
    [18] 殳蕾, 陈宇光, 陈鸿. 具有Dzyaloshinskii-Moriya相互作用的二维spin-Peierls模型的基态行为.  , 2002, 51(4): 902-907. doi: 10.7498/aps.51.902
    [19] 邵元智, 林光明, 蓝图, 钟伟荣. 基于交换耦合模型纳米双相(硬磁/软磁)自旋体系的磁性.  , 2002, 51(10): 2362-2368. doi: 10.7498/aps.51.2362
    [20] 张元仲, 郭汉英. 关于矢量-张量引力相互作用模型.  , 1982, 31(11): 1554-1557. doi: 10.7498/aps.31.1554
计量
  • 文章访问数:  6253
  • PDF下载量:  3879
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-11-15
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map