-
通过求解Milburn方程, 研究了内禀消相干条件下包含Dzyaloshinskii-Moriya (DM) 相互作用的两量子比特Heisenberg自旋系统实现的量子密集编码最佳传输容量的演化特性, 分析了不同方向DM相互作用、不同初态、各向异性以及内禀消相干因子等参数对最佳编码容量的影响. 研究表明: 初态的选择对系统密集编码最佳传输容量的影响很大, 不同类型初态下密集编码容量的依赖参数不完全相同; 当系统初态处于c|01+ d|10 形式的非最大纠缠时, 引入较弱的DM相互作用z分量可提高最佳编码容量; 相位消相干可抑制最佳编码容量的涨落并使其在长时间演化下趋于稳定. 研究还发现: 内禀消相干下, 通过选取合适的最大纠缠初态, 系统密集编码的最佳传输容量能够保持理想极大值2; 而且无论引入哪个方向的DM相互作用, 基于两量子比特Heisenberg自旋系统的最佳编码容量总可优于经典通信的传输容量.
-
关键词:
- Heisenberg模型 /
- Dzyaloshinskii-Moriya相互作用 /
- 内禀消相干 /
- 最佳编码容量
By solving the Milburn equation, we investigate the properties of optimal channel capacity for the quantum dense coding via a two-qubit Heisenberg spin system with Dzyaloshinskii-Moriya (DM) interaction in the presence of intrinsic decoherence. The influences of different DM interactions, different initial states, anisotropic coupling parameters, and intrinsic decoherence on optimal coding capacity are analyzed in detail. It is found that the initial state of the system affects optimal coding capacity greatly, whose dependent parameters are not identical for different types of initial states. When the system is initially in the form of the nonmaximally entangled state cft| {01} ightangle + dft| {10} ightangle , a weak z-component DM interaction can enhance the value of optimal coding capacity as compared with the value without DM interaction, and the phase decoherence effect can suppress the oscillation of optimal coding capacity and make the capacity decrease to a stable value for the long-time evolution. It is also found that under the influence of intrinsic decoherence, the optimal transmission capacity of dense coding can keep an ideal maximal value of 2 by choosing the proper initial maximally entangled state. Moreover, no matter from which direction the DM interaction is introduced, the optimal coding capacity via the two-qubit Heisenberg spin system is always larger than the transmission capacity of any classical communication.-
Keywords:
- Heisenberg model /
- Dzyaloshinski-Moriya interaction /
- intrinsic decoherence /
- optimal coding capacity
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Barenco A, Ekert A K 1995 J. Mod. Opt. 42 1253
[5] Hao J C, Li C F, Guo G C 2001 Phys. Rev. A 63 054301
[6] Zhang J, Xie C D, Peng K C 2002 Phys. Rev. A 66 032318
[7] Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304
[8] Li L Z, Qiu D W 2007 J. Phys. A: Math. Theor. 40 10871
[9] Wang M Y, Yan F L 2011 Chin. Phys. B 20 120309
[10] Horodecki M, Piani M 2012 J. Phys. A: Math. Theor. 45 105306
[11] Yang Y G, Xia J, Jia X, Zhang H 2012 Int. J. Theor. Phys. 51 1917
[12] Quek S, Li Z, Yeo Y 2010 Phys. Rev. A 81 024302
[13] Shadman Z, Kampermann H, Macchiavello C, Bruss D 2010 New J. Phys. 12 073042
[14] Metwally N 2011 J. Phys. A: Math. Theor. 44 055305
[15] Mattle K, Weinfurter H, Kwait P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[16] Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904
[17] Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282
[18] Fang X, Zhu X, Feng M, Mao X, Du F 2000 Phys. Rev. A 61 022307
[19] Wang X G 2001 Phys. Rev. A 64 012313
[20] Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901
[21] Wang H, Wu G X 2013 Chin. Phys. B 22 050512
[22] Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602
[23] Yu P F, Cai J G, Liu J M, Shen G T 2007 Eur. Phys. J. D 44 151
[24] Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207
[25] Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 0456
[26] Zhang G F 2008 Phys. Scr. 79 015001
[27] Jiang C L, Liu X J, Liu M W, Wang Y H, Peng C H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 61 170302]
[28] Qin M, Li Y B, Bai Z, Wang X 2014 Acta Phys. Sin. 63 110302 (in Chinese) [秦猛, 李延标, 白忠, 王晓 2014 63 110302]
[29] Abliz A, Gao H J, Xie X C, Wu Y S, Liu W M 2006 Phys. Rev. A 74 052105
[30] Qiu L, Wang A M, Su X Q, Ma X S 2009 Phys. Scr. 79 015005
[31] Cai J T, Abliz A, Bai Y K, Jin G S 2011 Chin. Phys. Lett. 28 020307
[32] Huang H L, Sun Z Y 2014 Appl. Mech. Mater. 446-447 986
[33] Dzyaloshinskii I 1958 J. Phys. Chem. Solid 4 241
[34] Moriya T 1960 Phys. Rev. Lett. 4 228
[35] Carmichael H J 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer Verlag)
[36] Li Z G, Fei S M, Wang Z D, Liu W M 2009 Phys. Rev. A 79 024303
[37] Milburn G J 1991 Phys. Rev. A 44 5401
[38] Xu J B, Zou X B, Yu J H 2000 Eur. Phys. J. D 10 295
[39] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
[40] Qiu L, Wang A M, Ma X S 2007 Physica A 383 325
-
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Barenco A, Ekert A K 1995 J. Mod. Opt. 42 1253
[5] Hao J C, Li C F, Guo G C 2001 Phys. Rev. A 63 054301
[6] Zhang J, Xie C D, Peng K C 2002 Phys. Rev. A 66 032318
[7] Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304
[8] Li L Z, Qiu D W 2007 J. Phys. A: Math. Theor. 40 10871
[9] Wang M Y, Yan F L 2011 Chin. Phys. B 20 120309
[10] Horodecki M, Piani M 2012 J. Phys. A: Math. Theor. 45 105306
[11] Yang Y G, Xia J, Jia X, Zhang H 2012 Int. J. Theor. Phys. 51 1917
[12] Quek S, Li Z, Yeo Y 2010 Phys. Rev. A 81 024302
[13] Shadman Z, Kampermann H, Macchiavello C, Bruss D 2010 New J. Phys. 12 073042
[14] Metwally N 2011 J. Phys. A: Math. Theor. 44 055305
[15] Mattle K, Weinfurter H, Kwait P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[16] Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904
[17] Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282
[18] Fang X, Zhu X, Feng M, Mao X, Du F 2000 Phys. Rev. A 61 022307
[19] Wang X G 2001 Phys. Rev. A 64 012313
[20] Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901
[21] Wang H, Wu G X 2013 Chin. Phys. B 22 050512
[22] Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602
[23] Yu P F, Cai J G, Liu J M, Shen G T 2007 Eur. Phys. J. D 44 151
[24] Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207
[25] Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 0456
[26] Zhang G F 2008 Phys. Scr. 79 015001
[27] Jiang C L, Liu X J, Liu M W, Wang Y H, Peng C H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 61 170302]
[28] Qin M, Li Y B, Bai Z, Wang X 2014 Acta Phys. Sin. 63 110302 (in Chinese) [秦猛, 李延标, 白忠, 王晓 2014 63 110302]
[29] Abliz A, Gao H J, Xie X C, Wu Y S, Liu W M 2006 Phys. Rev. A 74 052105
[30] Qiu L, Wang A M, Su X Q, Ma X S 2009 Phys. Scr. 79 015005
[31] Cai J T, Abliz A, Bai Y K, Jin G S 2011 Chin. Phys. Lett. 28 020307
[32] Huang H L, Sun Z Y 2014 Appl. Mech. Mater. 446-447 986
[33] Dzyaloshinskii I 1958 J. Phys. Chem. Solid 4 241
[34] Moriya T 1960 Phys. Rev. Lett. 4 228
[35] Carmichael H J 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer Verlag)
[36] Li Z G, Fei S M, Wang Z D, Liu W M 2009 Phys. Rev. A 79 024303
[37] Milburn G J 1991 Phys. Rev. A 44 5401
[38] Xu J B, Zou X B, Yu J H 2000 Eur. Phys. J. D 10 295
[39] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
[40] Qiu L, Wang A M, Ma X S 2007 Physica A 383 325
计量
- 文章访问数: 6253
- PDF下载量: 3879
- 被引次数: 0