搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钨中氢同位素热脱附实验的速率理论模拟研究

邹达人 金硕 许珂 吕广宏 赵振华 程龙 袁悦

引用本文:
Citation:

钨中氢同位素热脱附实验的速率理论模拟研究

邹达人, 金硕, 许珂, 吕广宏, 赵振华, 程龙, 袁悦

Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory

Zou Da-Ren, Jin Shuo, Xu Ke, Zhao Zhen-Hua, Cheng Long, Yuan Yue,
PDF
导出引用
  • 本文采用基于速率理论的模拟方法研究钨材料中氢同位素氘的热脱附谱. 热脱附数据来源于520 K下受等离子体辐照的多晶钨, 入射离子能量为40 eV, 剂量为1× 1026 D/m2. 通过调节速率理论中的俘获能、俘获率等参数, 最终获得与实验相符合的热脱附拟合谱. 拟合结果表明, 钨中俘获的氘存在于三种俘获态, 俘获能分别为1.14 eV, 1.40 eV和1.70 eV, 相应脱附温度峰值为500 K, 600 K和730 K. 这三个俘获能分别应对应于第一原理计算得到的空位俘获第3–5个氢原子的俘获能(含零点振动能修正)、空位俘获第1–2个氢原子的俘获能, 空位团簇对氢原子的俘获能. 模拟结果表明, 在本辐照实验条件下, 钨中空位及空位团簇是氘在钨中的主要俘获态.
    Simulation of thermal desorption spectroscopy (TDS) of the hydrogen isotope-deuterium in tungsten has been investigated in this paper based on rate theory. Data are obtained using polycrystalline tungsten, which is under the irradiation of a plasma with an energy of 40 eV and a dose of 1× 1026 D/m2 at 520 K. By adjusting the trapping energy, trapping rate, and other parameters in the rate theory, we can obtain the TDS simulation spectrum, which coincides with the experimental results. It is found that there mainly exist three trapping states for deuterium in tungsten, whose trapping energies are 1.14, 1.40 and 1.70 eV, and the temperature peaks of them is 500, 600 and 730 K, respectively. These three trapping energies correspond to the energy for trapping the 3rd-5th hydrogen by vacancy (the zero point energy correction has been taken into account), the energy for trapping the 1st-2nd hydrogen by vacancy, and the energy for trapping the hydrogen by vacancy cluster, obtained from first-principle calculation, respectively. It is suggested that the vacancy and vacancy cluster are the main trapping objects for deuterium in tungsten, under the experimental condition mentioned above.
    • 基金项目: 科技部国际热核聚变实验堆(ITER)计划专项(批准号: 2013GB109002)、教育部博士点基金(批准号: 20111102110038)和国家教育部回国人员科研启动基金资助的课题.
    • Funds: Project supported by the International Thermonuclear Experimental Reactor Program of the Ministry of Science and Technology of China (Grant No. 2013GB109002), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111102110038), and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.
    [1]

    Maier H, Luthin J, Balden M, Linkeb J, Kocha F, Bolt H 2001 Surf. Coat. Technol. 142-144 733

    [2]

    Hao J K 2006 Fusion Materials (Beijing: Chemical Industry Press) pp86-99 (in Chinese) [郝嘉琨 2006 聚变堆材料(北京: 化学工业出版社) 第86–99 页]

    [3]

    Poon M, Haasz A A, Davis J W, Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199

    [4]

    Jin X F, Feng Y Q, Zhusng C Q, Wang X 1984 Acta Phys. Sin. 33 754 (in Chinese) [金晓峰, 丰意青, 庄承群, 王迅 1984 33 754]

    [5]

    Xiang X, Chen C A, Liu K Z, Peng L X 2009 Rare Material 33 510 (in Chinese) [向鑫, 陈长安, 刘柯钊, 彭丽霞 2009 稀有金属 33 510]

    [6]

    Zheng Y Z, Qiu Y, Zhang P, Huang Y, Cui Z Y, Sun P, Yang Q W 2009 Chin. Phys. B 18 5406

    [7]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. 16 3312

    [8]

    Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001

    [9]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [10]

    Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016

    [11]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [12]

    Zhou H B, Jin S, Zhang Y, Lu G H 2012 Phys. Rev. Lett. 109 135502

    [13]

    Sun L, Jin S, Zhou H B, Zhang Y, Zhang W Q, Ueda Y, Lee H T, Lu G H 2014 Phys. J.: Condens. Matter 26 395402

    [14]

    You Y W, Kong X S, Wu X B, Xu Y C, Fang Q F, Chen J L, Luo G N, Liu C S, Pan B C, Wang Z G 2013 AIP Advances 3 012118

    [15]

    Veen A V, Filius H A, Vries J D, Bijkerk K R, Rozing G J, Segers D 1988 Nucl J. Mater. 155-157 1113

    [16]

    Causey R A, Doerner R, Fraser H, Kolasinski R D, Smugeresky J, Umstadter K, Williams R 2009 J. Nucl. Mater. 390-391 717

    [17]

    Shimada M, Hatano Y, Calderon P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R, Sharpe J P 2011 J. Nucl. Mater. 415 S667

    [18]

    Sang C F, Bonnin X, Warrier M J, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003

    [19]

    Ogorodnikova O V, Roth J, Mayer M 2008 J. Appl. Phys. 103 034902

    [20]

    Poon M, Haasz A A, Davis J W 2008 J. Nucl. Mater. 374 390

    [21]

    Causey R A 2002 J. Nucl. Mater 300 91

    [22]

    Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese) [李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢 2011 60 046604]

    [23]

    Tompkins F C 1978 Chemisorption of Gases on Metals (London: Academic Press) pp55-65

    [24]

    Ogorodnikova O V, Roth J, Mayer M 2003 J. Nucl. Mater 313-316 469

    [25]

    Spork C 2013 Ph. D. Dissertation (Utrecht: University of Utrecht)

    [26]

    Tyburska B, Alimov V K, Ogorodnikova O V, Schmid K, Ertl K 2009 J. Nucl. Mater 395 150

    [27]

    Hoen M H J, Tyburska-Pschel B, Ertl K, Mayer M, Rapp J, Kleyn A W, Zeijlmans van Emmichoven P A 2012 Nucl. Fusion 52 023008

    [28]

    Eleveld H 1996 Hydrogen and helium in selected fusion reactor materials (Delft: Technische Universiteit) pp73-80

    [29]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [30]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (London: Hemisphere Publishing Corporation) pp148-185

  • [1]

    Maier H, Luthin J, Balden M, Linkeb J, Kocha F, Bolt H 2001 Surf. Coat. Technol. 142-144 733

    [2]

    Hao J K 2006 Fusion Materials (Beijing: Chemical Industry Press) pp86-99 (in Chinese) [郝嘉琨 2006 聚变堆材料(北京: 化学工业出版社) 第86–99 页]

    [3]

    Poon M, Haasz A A, Davis J W, Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199

    [4]

    Jin X F, Feng Y Q, Zhusng C Q, Wang X 1984 Acta Phys. Sin. 33 754 (in Chinese) [金晓峰, 丰意青, 庄承群, 王迅 1984 33 754]

    [5]

    Xiang X, Chen C A, Liu K Z, Peng L X 2009 Rare Material 33 510 (in Chinese) [向鑫, 陈长安, 刘柯钊, 彭丽霞 2009 稀有金属 33 510]

    [6]

    Zheng Y Z, Qiu Y, Zhang P, Huang Y, Cui Z Y, Sun P, Yang Q W 2009 Chin. Phys. B 18 5406

    [7]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. 16 3312

    [8]

    Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001

    [9]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [10]

    Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016

    [11]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [12]

    Zhou H B, Jin S, Zhang Y, Lu G H 2012 Phys. Rev. Lett. 109 135502

    [13]

    Sun L, Jin S, Zhou H B, Zhang Y, Zhang W Q, Ueda Y, Lee H T, Lu G H 2014 Phys. J.: Condens. Matter 26 395402

    [14]

    You Y W, Kong X S, Wu X B, Xu Y C, Fang Q F, Chen J L, Luo G N, Liu C S, Pan B C, Wang Z G 2013 AIP Advances 3 012118

    [15]

    Veen A V, Filius H A, Vries J D, Bijkerk K R, Rozing G J, Segers D 1988 Nucl J. Mater. 155-157 1113

    [16]

    Causey R A, Doerner R, Fraser H, Kolasinski R D, Smugeresky J, Umstadter K, Williams R 2009 J. Nucl. Mater. 390-391 717

    [17]

    Shimada M, Hatano Y, Calderon P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R, Sharpe J P 2011 J. Nucl. Mater. 415 S667

    [18]

    Sang C F, Bonnin X, Warrier M J, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003

    [19]

    Ogorodnikova O V, Roth J, Mayer M 2008 J. Appl. Phys. 103 034902

    [20]

    Poon M, Haasz A A, Davis J W 2008 J. Nucl. Mater. 374 390

    [21]

    Causey R A 2002 J. Nucl. Mater 300 91

    [22]

    Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese) [李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢 2011 60 046604]

    [23]

    Tompkins F C 1978 Chemisorption of Gases on Metals (London: Academic Press) pp55-65

    [24]

    Ogorodnikova O V, Roth J, Mayer M 2003 J. Nucl. Mater 313-316 469

    [25]

    Spork C 2013 Ph. D. Dissertation (Utrecht: University of Utrecht)

    [26]

    Tyburska B, Alimov V K, Ogorodnikova O V, Schmid K, Ertl K 2009 J. Nucl. Mater 395 150

    [27]

    Hoen M H J, Tyburska-Pschel B, Ertl K, Mayer M, Rapp J, Kleyn A W, Zeijlmans van Emmichoven P A 2012 Nucl. Fusion 52 023008

    [28]

    Eleveld H 1996 Hydrogen and helium in selected fusion reactor materials (Delft: Technische Universiteit) pp73-80

    [29]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [30]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (London: Hemisphere Publishing Corporation) pp148-185

  • [1] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [2] 娄冰琼, 李芳, 王沛妍, 王黎明, 唐永波. 钫原子磁偶极超精细结构常数及其同位素的磁偶极矩的理论计算.  , 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [3] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究.  , 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [4] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超. 聚乙烯单链量子热输运的同位素效应.  , 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [5] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究.  , 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [6] 孙继忠, 张治海, 刘升光, 王德真. 载能氢同位素原子与石墨(001)面碰撞的分子动力学研究.  , 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [7] 王晓璐, 令狐荣锋, 杨建会, 吕兵, 高涛, 杨向东. Ne同位素替代下Ne-HF碰撞截面的理论计算.  , 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [8] 王刚, 方向正, 郭建友. 相对论平均场理论对Pt同位素形状演化的研究.  , 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [9] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究.  , 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [10] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究.  , 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [11] 李文峰, 令狐荣锋, 程新路, 杨向东. 氦同位素原子与钠分子碰撞转动激发积分散射截面的理论计算.  , 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [12] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究.  , 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [13] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究.  , 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [14] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算.  , 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [15] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数.  , 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [16] 张玉美, 许甫荣. 丰中子氮同位素β-衰变的理论研究.  , 2008, 57(8): 4826-4832. doi: 10.7498/aps.57.4826
    [17] 张 莉, 朱正和, 杨本福, 龙兴贵, 罗顺忠. 氢同位素化合物TiH2,TiD2和TiT2的电子振动近似理论方法.  , 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [18] 张寒洁, 颜朝军, 李海洋, 何丕模, 鲍世宁, 汪健, 徐纯一, 徐亚伯. NO在清洁和Cs覆盖的Ru(100)表面上吸附的热脱附谱.  , 2000, 49(3): 577-580. doi: 10.7498/aps.49.577
    [19] 庄承群, 丰意青, 金晓峰, 王迅, 蔡显鄂, 俞练民. 蓝色氧化钨吸附丙烯和氧的热脱附谱.  , 1985, 34(3): 341-347. doi: 10.7498/aps.34.341
    [20] 金晓峰, 丰意青, 庄承群, 王迅. 用热脱附谱研究氢在Si(100)清洁表面的吸附.  , 1984, 33(6): 747-754. doi: 10.7498/aps.33.747
计量
  • 文章访问数:  6684
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-19
  • 修回日期:  2014-10-15
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map