搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有未知非对称控制增益的不确定分数阶混沌系统自适应模糊同步控制

刘恒 李生刚 孙业国 王宏兴

引用本文:
Citation:

带有未知非对称控制增益的不确定分数阶混沌系统自适应模糊同步控制

刘恒, 李生刚, 孙业国, 王宏兴

Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain

Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing
PDF
导出引用
  • 针对带有非对称控制增益的不确定分数阶混沌系统的同步问题设计了模糊自适应控制器. 模糊逻辑系统用来逼近未知的非线性函数, 非对称的控制增益矩阵被分解为一个未知的正定矩阵、一个对角线上元素为+1或-1的已知对角矩阵和 一个未知的上三角矩阵的乘积. 基于分数阶Lyapunov稳定性理论构造了模糊控制器以及分数阶的参数自适应律, 在保证所有变量有界的情况下实现驱动系统和响应系统的同步. 在分数阶系统稳定性分析中给出了一种平方Lyapunov函数的使用方法, 根据此方法很多针对整数阶系统的控制方法可以推广到分数阶系统中. 最后数值仿真结果验证了所提控制方法的可行性.
    In this paper the synchronization problem for the uncertain fractional-order chaotic systems with unknown non-symmetrical control gain matrices is investigated by means of adaptive fuzzy control. Fuzzy logic systems are employed to approximate the unknown nonlinear functions. We decompose the control gain matrix into a positive definite matrix, a unity upper triangular matrix, and a diagonal matrix with diagonal entries +1 or -1. The positive matrix is used to construct the Lyapunov function; the diagonal matrix is employed to design the controller. Based on the fractional Lyapunov stability theorem, an adaptive fuzzy controller, which is accompanied by fractional adaptation laws, is established. The proposed methods can guarantee the boundedness of the involved signals as well as the asymptotical convergence of the synchronization errors. It should be pointed out that the methods for using quadratic Lyapunov function in the stability analysis of the fractional-order chaotic systems are developed in this paper. Based on the results of this paper, many control methods which are valid for integer-order nonlinear systems can be extended to control fractional-order nonlinear systems. Finally, the effectiveness of the proposed methods is shown by simulation studies.
    • 基金项目: 国家自然科学基金(批准号: 11401243, 61403157)和中央高校基本科研业务费专项资金(批准号: GK201504002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243, 61403157), and the Fundamental Research Funds for the Central Universities (Grant No. GK201504002).
    [1]

    Podlubny I 1999 Fractional differential Equations (New York: Academic Press)

    [2]

    Li Y, Chen Y Q, Podlubny I 2009 Automatica 45 3690

    [3]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [4]

    Yuan L G, Yang Q G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 305

    [5]

    Li R, Zhang G J, Yao H, Zhu T, Zhang Z H 2014 Acta Phys. Sin. 63 230501 (in Chinese) [李睿, 张广军, 姚宏, 朱涛, 张志浩 2014 63 230501]

    [6]

    Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670

    [7]

    Mahmoud G M, Mahmoud E E 2012 Nonlinear Dyn. 67 1613

    [8]

    Kim S H, Park P, Jeong C 2010 IET Control Theory Appl. 4 1828

    [9]

    Kiani B A, Fallahi K, Pariz N, Leung H 2009 Commun. Nonlinear Sci. Numer. Simul. 14 863

    [10]

    Ma S Q, Lu Q S, Feng Z S 2010 Int. J. Nonlinear Mech. 45 659

    [11]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [12]

    Zhou P, Ding R, Cao Y X 2012 Nonlinear Dyn. 70 1263

    [13]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 62 080507]

    [14]

    Zhang R X, Yang S P 2010 Chin. Phys. B 19 020510

    [15]

    Yang L X, Jiang J 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1496

    [16]

    Liu J G, Huang L H, Meng Y M 2013 Int. J. Adapt. Control Signal Process. 27 1086

    [17]

    Hosseinnia S H, Ghaderi R, Ranjbar A N, Mahmoudiana M, and Momanic S 2010 Computers and Mathematics with Applications 59 1637

    [18]

    Yin C, Dadras S, and Zhong S M 2012 Journal of the Franklin Institute 349 2078

    [19]

    Pan L, Zhou W N, Fang J A, Li D Q 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3754

    [20]

    Senol B, Ates A, Alagoz B B, Yeroglu C 2014 ISA Transactions 53 189

    [21]

    Essounbouli N, Hamzaoui A, Zaytoon J 2006 Control Intell. Systems 34 12

    [22]

    Tong S C, Tang J, Wang T 2000 Fuzzy Sets and Systems 111 153

    [23]

    Tong S C, He X L, Zhang H G 2009 IEEE Trans. Fuzzy Syst. 17 1059

    [24]

    Boulkroune A, Tadjine M, M’Saad M, Farza M 2010 Fuzzy Sets and Systems 161 797

    [25]

    Tong S C, Liu C L, Li Y M 2010 IEEE Trans. Fuzzy Syst. 18 845

    [26]

    Liu H, Yu H J, Xiang W 2012 Acta Phys. Sin. 61 180503 (in Chinese) [刘恒, 余海军, 向伟 2012 61 180503]

    [27]

    Tong S C, Li Y M 2012 IEEE Trans. Fuzzy Syst. 20 168

    [28]

    Liu H, Yu H J, Xiang W 2012 Chin. Phys. B 21 120505

    [29]

    Pan Y P, Er M J 2013 IEEE Trans. Fuzzy Syst. 21 1123

    [30]

    Tong S C, Li Y M 2013 IEEE Trans. Fuzzy Syst. 21 134

    [31]

    Yang Y, Hua C C, Guan X P 2014 IEEE Trans. Fuzzy Syst. 22 631

    [32]

    Wang L X 1994 Adaptive Fuzzy Systems and Control: Design and Stability Analysis (Englewood Cliffs: Prentice Hall) pp120-144

    [33]

    Trigeassou J C, Maamri N, Sabatier J, Oustaloup A 2011 Signal Processing 91 437

    [34]

    Shen J, Lam J 2014 Automatica 50 547

    [35]

    Lin T C, Kuo C H 2011 ISA Transactions 50 548

    [36]

    Lin T C, Lee T Y, Balas V E 2011 Chaos, Solitons & Fractals 44 791

    [37]

    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2951

    [38]

    Costa P R, Hsu L, Imai A K, Kokotovic P 2003 Automatica 39 1251

    [39]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [40]

    L J H, Chen G R, Yu X H, Leung H 2004 IEEE Trans. Circuits Syst. I 51 2476

    [41]

    L J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circuits Syst. I 53 149

  • [1]

    Podlubny I 1999 Fractional differential Equations (New York: Academic Press)

    [2]

    Li Y, Chen Y Q, Podlubny I 2009 Automatica 45 3690

    [3]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [4]

    Yuan L G, Yang Q G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 305

    [5]

    Li R, Zhang G J, Yao H, Zhu T, Zhang Z H 2014 Acta Phys. Sin. 63 230501 (in Chinese) [李睿, 张广军, 姚宏, 朱涛, 张志浩 2014 63 230501]

    [6]

    Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670

    [7]

    Mahmoud G M, Mahmoud E E 2012 Nonlinear Dyn. 67 1613

    [8]

    Kim S H, Park P, Jeong C 2010 IET Control Theory Appl. 4 1828

    [9]

    Kiani B A, Fallahi K, Pariz N, Leung H 2009 Commun. Nonlinear Sci. Numer. Simul. 14 863

    [10]

    Ma S Q, Lu Q S, Feng Z S 2010 Int. J. Nonlinear Mech. 45 659

    [11]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [12]

    Zhou P, Ding R, Cao Y X 2012 Nonlinear Dyn. 70 1263

    [13]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 62 080507]

    [14]

    Zhang R X, Yang S P 2010 Chin. Phys. B 19 020510

    [15]

    Yang L X, Jiang J 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1496

    [16]

    Liu J G, Huang L H, Meng Y M 2013 Int. J. Adapt. Control Signal Process. 27 1086

    [17]

    Hosseinnia S H, Ghaderi R, Ranjbar A N, Mahmoudiana M, and Momanic S 2010 Computers and Mathematics with Applications 59 1637

    [18]

    Yin C, Dadras S, and Zhong S M 2012 Journal of the Franklin Institute 349 2078

    [19]

    Pan L, Zhou W N, Fang J A, Li D Q 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3754

    [20]

    Senol B, Ates A, Alagoz B B, Yeroglu C 2014 ISA Transactions 53 189

    [21]

    Essounbouli N, Hamzaoui A, Zaytoon J 2006 Control Intell. Systems 34 12

    [22]

    Tong S C, Tang J, Wang T 2000 Fuzzy Sets and Systems 111 153

    [23]

    Tong S C, He X L, Zhang H G 2009 IEEE Trans. Fuzzy Syst. 17 1059

    [24]

    Boulkroune A, Tadjine M, M’Saad M, Farza M 2010 Fuzzy Sets and Systems 161 797

    [25]

    Tong S C, Liu C L, Li Y M 2010 IEEE Trans. Fuzzy Syst. 18 845

    [26]

    Liu H, Yu H J, Xiang W 2012 Acta Phys. Sin. 61 180503 (in Chinese) [刘恒, 余海军, 向伟 2012 61 180503]

    [27]

    Tong S C, Li Y M 2012 IEEE Trans. Fuzzy Syst. 20 168

    [28]

    Liu H, Yu H J, Xiang W 2012 Chin. Phys. B 21 120505

    [29]

    Pan Y P, Er M J 2013 IEEE Trans. Fuzzy Syst. 21 1123

    [30]

    Tong S C, Li Y M 2013 IEEE Trans. Fuzzy Syst. 21 134

    [31]

    Yang Y, Hua C C, Guan X P 2014 IEEE Trans. Fuzzy Syst. 22 631

    [32]

    Wang L X 1994 Adaptive Fuzzy Systems and Control: Design and Stability Analysis (Englewood Cliffs: Prentice Hall) pp120-144

    [33]

    Trigeassou J C, Maamri N, Sabatier J, Oustaloup A 2011 Signal Processing 91 437

    [34]

    Shen J, Lam J 2014 Automatica 50 547

    [35]

    Lin T C, Kuo C H 2011 ISA Transactions 50 548

    [36]

    Lin T C, Lee T Y, Balas V E 2011 Chaos, Solitons & Fractals 44 791

    [37]

    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2951

    [38]

    Costa P R, Hsu L, Imai A K, Kokotovic P 2003 Automatica 39 1251

    [39]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [40]

    L J H, Chen G R, Yu X H, Leung H 2004 IEEE Trans. Circuits Syst. I 51 2476

    [41]

    L J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circuits Syst. I 53 149

  • [1] 陈晔, 李生刚, 刘恒. 基于自适应模糊控制的分数阶混沌系统同步.  , 2016, 65(17): 170501. doi: 10.7498/aps.65.170501
    [2] 黄宇, 刘玉峰, 彭志敏, 丁艳军. 基于量子并行粒子群优化算法的分数阶混沌系统参数估计.  , 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [3] 潘光, 魏静. 一种分数阶混沌系统同步的自适应滑模控制器设计.  , 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] 杨叶红, 肖剑, 马珍珍. 部分线性的分数阶混沌系统修正函数投影同步.  , 2013, 62(18): 180505. doi: 10.7498/aps.62.180505
    [5] 黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步.  , 2013, 62(8): 080507. doi: 10.7498/aps.62.080507
    [6] 刘恒, 余海军, 向伟. 带未知扰动的多涡卷混沌系统修正函数时滞投影同步.  , 2012, 61(18): 180503. doi: 10.7498/aps.61.180503
    [7] 马铁东, 江伟波, 浮洁, 薛方正. 基于改进脉冲控制方法的超混沌系统同步.  , 2012, 61(10): 100507. doi: 10.7498/aps.61.100507
    [8] 曹鹤飞, 张若洵. 基于单驱动变量分数阶混沌同步的参数调制数字通信及硬件实现.  , 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [9] 黄丽莲, 马楠. 一种异结构分数阶混沌系统投影同步的新方法.  , 2012, 61(16): 160510. doi: 10.7498/aps.61.160510
    [10] 马铁东, 江伟波, 浮洁. 基于比较系统方法的分数阶混沌系统脉冲同步控制.  , 2012, 61(9): 090503. doi: 10.7498/aps.61.090503
    [11] 马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正. 一类分数阶混沌系统的自适应同步.  , 2012, 61(16): 160506. doi: 10.7498/aps.61.160506
    [12] 孙宁. 基于区间系统理论的分数阶混沌系统同步.  , 2011, 60(12): 120506. doi: 10.7498/aps.60.120506
    [13] 胡建兵, 肖建, 赵灵冬. 阶次不等的分数阶混沌系统同步.  , 2011, 60(11): 110515. doi: 10.7498/aps.60.110515
    [14] 曹鹤飞, 张若洵. 基于滑模控制的分数阶混沌系统的自适应同步.  , 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [15] 周平, 邝菲. 分数阶混沌系统与整数阶混沌系统之间的同步.  , 2010, 59(10): 6851-6858. doi: 10.7498/aps.59.6851
    [16] 许喆, 刘崇新, 杨韬. 基于Lyapunov方程的分数阶新混沌系统的控制.  , 2010, 59(3): 1524-1531. doi: 10.7498/aps.59.1524
    [17] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步.  , 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [18] 刘丁, 闫晓妹. 基于滑模控制实现分数阶混沌系统的投影同步.  , 2009, 58(6): 3747-3752. doi: 10.7498/aps.58.3747
    [19] 胡建兵, 韩 焱, 赵灵冬. 基于Lyapunov方程的分数阶混沌系统同步.  , 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [20] 薛月菊, 冯汝鹏. 连续时间耦合系统中时空混沌的自适应模糊控制.  , 2001, 50(3): 440-444. doi: 10.7498/aps.50.440
计量
  • 文章访问数:  6838
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 修回日期:  2014-11-05
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map