搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期力调制噪声驱动下单模激光系统的多重随机共振

张瑞芳 程庆华 徐大海

引用本文:
Citation:

周期力调制噪声驱动下单模激光系统的多重随机共振

张瑞芳, 程庆华, 徐大海

Stochastic multi-resonance of the single-mode laser system driven by the noise with periodic force modulation

Zhang Rui-Fang, Cheng Qing-Hua, Xu Da-Hai
PDF
导出引用
  • 在周期力调制噪声驱动下单模激光系统的光强方程中加入调幅波, 用线性化近似方法计算了系统的光强关联函数和输出信噪比, 并对信噪比进行数值计算和分析, 发现低频调制频率Ω、高频载波频率ω和周期力频率Ωλ对系统的输出信噪比有很大的影响. 具体表现为信噪比R 随低频调制频率Ω 的变化过程中出现了多重随机共振和极强的单峰共振, 当Ω ω 时, 系统出现的是多峰共振, 且随着Ωλ 增加, 共振峰间的距离增大, 峰值位置不变; 当Ω → ω 时, 输出信噪比R迅速增大, 而Ωλ 的影响被削弱甚至可以忽略, 多峰共振消失; 当Ω = ω 时, 系统出现了极强的单峰共振. 此外, 信噪比随周期力频率的变化呈现振幅减小的多重随机共振, 而随载流频率的变化出现单峰随机共振.
    Using the linear approximation method, we calculate the intensity correlation function and the output signal-tonoise ratio (SNR) by adding a modulated wave to light intensity equation of a single mode laser system driven by the periodic force of modulating noise. Through the numerical calculation and analysis of the SNR, we find that the lowfrequency modulation frequency Ω, the high-frequency carrier frequency ω, and the frequency of periodic force Ωλ have a significant effect on the SNR. In particular, multi-peak stochastic resonances and strong single-peak resonance with low-frequency modulation frequency Ω appear in the SNR. When Ω ω, the system exhibits multi-peak resonance and the distance between the resonance peaks increases with the increase of Ωλ, but the position of peak is invariant. When Ω → ω, the output SNR R increases rapidly, the effect of Ωλ becomes weak or negligible, and multi-peak resonance disappears. When Ω = ω, a strong single-peak resonance appears in the system. In addition, the SNR varies with the decrease of amplitude of the multi-peak stochastic resonance, and with the SNR changes with carrier frequency the single-peak stochastic resonance appears in the system.
    • 基金项目: 湖北省高等学校优秀中青年科技创新团队计划项目(批准号: T201204)和湖北省教育厅科学技术研究计划重点项目(批准号: D20121203)资助的课题.
    • Funds: Project supported by the Technology Creative Project of Excellent Middle and Young Team of Hubei Province, China (Grant No. T201204) and the Emphases Item of Education Office of Hubei Province, China (Grant No. D20121203).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phts. A: Math.Gen 14 L453

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [3]

    Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1994 Phys. Rev. E 49 4878

    [4]

    Burada P S, Schmid G, Reguera D, Rubi J M, Hänggi P 2009 Europhys. Lett. 87 50003

    [5]

    Jin Y F, Xu W, Xu M, Fang T 2005 J.Phys. A: Math. Gen. 38 3733

    [6]

    Tang Y, Gao H J, Zou W, Kurths J 2013 Phys. Rev. E 87 062920

    [7]

    He G T, Luo R Z, Luo M K 2013 Phys. Scr. 88 065009

    [8]

    Li D S, Li J H 2010 Commun. Theor. Phys. 53 298

    [9]

    Gao S L, Wei K, Zhong S C, Ma H 2012 Phys. Scr. 86 025002

    [10]

    Lemarchand A, Gorecki J, Gorecki A, Nowakowski B 2014 Phys. Rev. E 89 022916

    [11]

    Kravtsov N V, Lariontsev E G, Chekina S N 2013 Quantum Electron. 43 917

    [12]

    Cao L, Wu D J 2007 Phys. Scr. 76 539

    [13]

    Han L B, Cao L, Wu D J, Wang J 2004 Acta Phys. Sin. 53 2127 (in Chinese) [韩立波, 曹力, 吴大进, 王俊 2004 53 2127]

    [14]

    Zhang L Y Cao L, Wu D J 2009 Commun. Theor. Phys. 52 143

    [15]

    Wang B, Wu X Q, Qian J F 2010 Chin. Opt. Lett. 8 1160

    [16]

    Zheng C M, Guo W, Du L C, Mei D C 2014 Europhys. Lett. 105 60004

    [17]

    Chen L M, Cao L, Wu D J 2006 Chin. J. Quantum Electron. 23 167 (in Chinese) [陈黎梅, 曹力, 吴大进 2006 量子电子学报 23 167]

    [18]

    Jin G X, Zhang L Y, Cao L 2009 Chin. Phys. B 18 952

    [19]

    Zhang L Y, Cao L, Wu D J 2008 Cummun. Theor. Phys. 49 1310

    [20]

    Chen D Y, Zhang L 2009 Chin. Phys. B 18 1755

    [21]

    Chen L M, Cao L, Wu D J, Ge G Q 2005 Commum. Theor. Phys. 44 638

    [22]

    Mcnamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854

    [23]

    Barykin A V, Seki K 1998 Phys. Rev. E 57 6555

    [24]

    Berdichevsky V, Gitterman M 1999 Phys. Rev. E 60 1494

    [25]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 60 060514]

    [26]

    Chen D Y, Wang Z L 2008 Acta Phys. Sin. 57 3333 (in Chinese) [陈德彝, 王忠龙 2008 57 3333]

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phts. A: Math.Gen 14 L453

    [2]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [3]

    Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1994 Phys. Rev. E 49 4878

    [4]

    Burada P S, Schmid G, Reguera D, Rubi J M, Hänggi P 2009 Europhys. Lett. 87 50003

    [5]

    Jin Y F, Xu W, Xu M, Fang T 2005 J.Phys. A: Math. Gen. 38 3733

    [6]

    Tang Y, Gao H J, Zou W, Kurths J 2013 Phys. Rev. E 87 062920

    [7]

    He G T, Luo R Z, Luo M K 2013 Phys. Scr. 88 065009

    [8]

    Li D S, Li J H 2010 Commun. Theor. Phys. 53 298

    [9]

    Gao S L, Wei K, Zhong S C, Ma H 2012 Phys. Scr. 86 025002

    [10]

    Lemarchand A, Gorecki J, Gorecki A, Nowakowski B 2014 Phys. Rev. E 89 022916

    [11]

    Kravtsov N V, Lariontsev E G, Chekina S N 2013 Quantum Electron. 43 917

    [12]

    Cao L, Wu D J 2007 Phys. Scr. 76 539

    [13]

    Han L B, Cao L, Wu D J, Wang J 2004 Acta Phys. Sin. 53 2127 (in Chinese) [韩立波, 曹力, 吴大进, 王俊 2004 53 2127]

    [14]

    Zhang L Y Cao L, Wu D J 2009 Commun. Theor. Phys. 52 143

    [15]

    Wang B, Wu X Q, Qian J F 2010 Chin. Opt. Lett. 8 1160

    [16]

    Zheng C M, Guo W, Du L C, Mei D C 2014 Europhys. Lett. 105 60004

    [17]

    Chen L M, Cao L, Wu D J 2006 Chin. J. Quantum Electron. 23 167 (in Chinese) [陈黎梅, 曹力, 吴大进 2006 量子电子学报 23 167]

    [18]

    Jin G X, Zhang L Y, Cao L 2009 Chin. Phys. B 18 952

    [19]

    Zhang L Y, Cao L, Wu D J 2008 Cummun. Theor. Phys. 49 1310

    [20]

    Chen D Y, Zhang L 2009 Chin. Phys. B 18 1755

    [21]

    Chen L M, Cao L, Wu D J, Ge G Q 2005 Commum. Theor. Phys. 44 638

    [22]

    Mcnamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854

    [23]

    Barykin A V, Seki K 1998 Phys. Rev. E 57 6555

    [24]

    Berdichevsky V, Gitterman M 1999 Phys. Rev. E 60 1494

    [25]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 60 060514]

    [26]

    Chen D Y, Wang Z L 2008 Acta Phys. Sin. 57 3333 (in Chinese) [陈德彝, 王忠龙 2008 57 3333]

  • [1] 王烨花, 何美娟. 高斯色噪声激励下非对称双稳耦合网络系统的随机共振.  , 2022, 71(19): 190501. doi: 10.7498/aps.71.20220909
    [2] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析.  , 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [3] 汪志云, 陈培杰, 张良英. 色关联噪声驱动下双模激光随机共振.  , 2014, 63(19): 194204. doi: 10.7498/aps.63.194204
    [4] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响.  , 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [5] 曾冰, 曾曙光, 张彬, 孙年春, 隋展. 提升啁啾脉冲激光信噪比的扫描滤波方法.  , 2012, 61(15): 154209. doi: 10.7498/aps.61.154209
    [6] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究.  , 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [7] 张晓燕, 徐伟, 周丙常. 色高斯噪声驱动双稳系统的多重随机共振研究.  , 2011, 60(6): 060514. doi: 10.7498/aps.60.060514
    [8] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比.  , 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [9] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振.  , 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [10] 陈德彝, 王忠龙. 噪声间关联程度的时间周期调制对单模激光随机共振的影响.  , 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [11] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振.  , 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [12] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振.  , 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [13] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振.  , 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [14] 宁丽娟, 徐 伟. 光学双稳系统中的随机共振.  , 2007, 56(4): 1944-1947. doi: 10.7498/aps.56.1944
    [15] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振.  , 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [16] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振.  , 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [17] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象.  , 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [18] 张良英, 曹 力, 吴大进. 具有色关联的色噪声驱动下单模激光线性模型的随机共振.  , 2003, 52(5): 1174-1178. doi: 10.7498/aps.52.1174
    [19] 康艳梅, 徐健学, 谢 勇. 弱噪声极限下二维布朗运动的随机共振现象.  , 2003, 52(4): 802-808. doi: 10.7498/aps.52.802
    [20] 祝恒江, 李 蓉, 温孝东. 利用随机共振在强噪声下提取信息信号.  , 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
计量
  • 文章访问数:  6049
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-06
  • 修回日期:  2014-07-23
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map