-
多尺度冲击技术可以准确的再现含能材料冲击起爆过程中冲击波阵面及反应区内的热力学和化学反应路径. 文本利用反应力场分子动力学(ReaxFF-MD)对六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯(CL20/TNT)1:1共晶沿110方向以610 kms-1的冲击速度进行冲击压缩模拟. 产物识别分析显示当冲击速度7 kms-1时, 冲击激发化学反应发生, 并且利用Rankine-Hugoniot守恒关系求得冲击起爆压力为24.56 GPa. 再者, 比较了冲击速度与粒子速度, 冲击速度与冲击诱发形变的关系, 当冲击速度为78 kms-1时, 冲击起爆发生, 系统经历弹- 塑性相变, 初级化学反应及次级化学反应, 并且相变与化学反应同时进行, 对于较高的冲击波速度(9 kms-1), 共晶系统内为过驱响应, 热力学参数均出现陡峭的梯度变化, 冲击波压缩材料直接阶跃至塑性变形阶段, 并且此阶段出现大量的碳原子.Multiscale shock technique (MSST) has been shown to accurately reproduce the thermodynamic and chemical reaction paths throughout the shock wave fronts and reaction zone of shock initiation of energetic materials. A 1:1 cocrystal of hexanitrohexaazaisowurtzitane/trinitrotoluene (CL20/TNT) is shocked along the 110 orientations under the conditions of shock velocities lying in the range 610 kms-1 in ReaxFF molecular dynamics simulations. Products recognition analysis leads to reactions occurring with shock velocities of 7 kms-1 or stronger, and the shock initiation pressure is 24.56 GPa obtained from the conservation of Rankine-Hugoniot relation. Comparisons of the relationships are carried out between shock velocity and particle velocity, shock velocities and elastic-plastic transition. During shock initiation with the shock velocities lying in the range 78 kms-1, the shocked systems correspond to an elastic-plastic deformation, primary chemical reactions, and secondary chemical reactions. And the elastic-plastic transition coincides with the chemical reaction at higher shock velocity (9 kms-1), the cocrystal material response is over-driven, and all the thermodynamic properties show steep gradients, the compressed material by the shock wave steps into the plastic region, and a large number of carbon atoms appear in the early stage of over-driven shock initiation.
-
Keywords:
- multiscale shock technique /
- ReaxFF molecular dynamics /
- shock initiation /
- cocrystal
[1] Zumbrun K 2011 Arch. Rational Mech. Anal. 200 141
[2] Bolton O, Matzger J A 2011 Angew. Chem. Int. Ed. 50 8960
[3] Yang Z W, Li H Z, Zhou X Q, Zhang C Y, Huang H, Li J S, Nie F D 2012 Cryst. Growth Des. 12 5155
[4] Bolton O, Simke L R, Pagoria P F, Matzger A J 2012 Cryst. Growth Des. 12 4311
[5] Wei C X, Huang H, Duan X H, Pei C H 2011 Propellants Explos. Pyrotech. 36 416
[6] Landenberger K B, Matzger A J 2010 Crystal Growth & Design 10 5341
[7] Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 62 208202]
[8] Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P S, Germann T C, Holian B L 2001 Phys. Rev. E. 63 016121
[9] Heim A J, Jensen N G, Kober E M, Germann T C 2008 Phys. Rev. E 78 046710
[10] Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503
[11] Reed E J, Fried L E, Manaa M R, Joannopoulos J D 2005 Chemistry at Extreme Conditions (New York: Elsevier) p297
[12] Reed E J, Fried L E, Henshaw W D, Tarver C M 2006 Phys. Rev. E 74 056706
[13] Reed E J, Maiti A, Fried L E 2010 Phys. Rev. E 81 016607
[14] Manaa M, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146
[15] Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2008 Nat. Phys. 4 72
[16] Shan T R, Wixom R R, Mattsson A E, Thompson A P 2013 J. Phys. Chem. B 117 928
[17] Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696
[18] Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z, Zhang C Y 2013 J. Phys. Chem. C 117 24368
[19] Manaa M R, Reed E J, Fried L E, Goldman N 2009 J. Am. Chem. Soc. 131 5483
[20] Mundy C J, Curioni A, Goldman N, Kuo I F W, Reed E J, Fried L E, Ianuzzi M 2008 J. Chem. Phys. 128 184701
[21] Goldman N, Fried L E, Mundy C J, Kuo I F W, Curioni A, Reed E J 2007 AIP Conf. Proc. 955 443
[22] van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396
[23] Brenner D W 1990 Physical Review B 42 9458
[24] Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016
[25] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]
[26] Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501
[27] Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960
[28] Plimpton S J 1995 J. Comput. Phys. 117 1
[29] Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245
[30] Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074
[31] Strachan A, Kober E W, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502
[32] Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard W A 2009 J. Phys. Chem. A 113 10619
[33] Viecelli J A, Ree F H 2000 Journal of Applied Physics 88 683
[34] Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352
[35] Vasil'ev A A, Pinaev A V 2008 Combustion, Explosion, and Shock Waves. 44 317
[36] Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506
[37] Rice M H, McQueen R G, Walsh J M 1958 Solid State Phys. 6 1
[38] Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p648
[39] Smith A L, Allen A, Belak J, Boehly T, Hauer A, B. Holian B, Kalantar D, Kyrala G, Lee R W, Lomdahl P, Meyers M A, Paisley D, Pollaine S, Remington B, Swift D C, Weber S, Wark J S 2001 Phys. Rev. Lett. 86 2349
[40] Lane J M D, Marder M P 2006 arXiv preprint cond-mat/0607335
[41] Yang Z W, Huang H, Li H Z, Zhou X Q, Li J S, Nie F D 2012 Chinese Journal of Energetic Materials 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 李金山, 聂福德 2012 含能材料 20 256]
-
[1] Zumbrun K 2011 Arch. Rational Mech. Anal. 200 141
[2] Bolton O, Matzger J A 2011 Angew. Chem. Int. Ed. 50 8960
[3] Yang Z W, Li H Z, Zhou X Q, Zhang C Y, Huang H, Li J S, Nie F D 2012 Cryst. Growth Des. 12 5155
[4] Bolton O, Simke L R, Pagoria P F, Matzger A J 2012 Cryst. Growth Des. 12 4311
[5] Wei C X, Huang H, Duan X H, Pei C H 2011 Propellants Explos. Pyrotech. 36 416
[6] Landenberger K B, Matzger A J 2010 Crystal Growth & Design 10 5341
[7] Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 62 208202]
[8] Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P S, Germann T C, Holian B L 2001 Phys. Rev. E. 63 016121
[9] Heim A J, Jensen N G, Kober E M, Germann T C 2008 Phys. Rev. E 78 046710
[10] Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503
[11] Reed E J, Fried L E, Manaa M R, Joannopoulos J D 2005 Chemistry at Extreme Conditions (New York: Elsevier) p297
[12] Reed E J, Fried L E, Henshaw W D, Tarver C M 2006 Phys. Rev. E 74 056706
[13] Reed E J, Maiti A, Fried L E 2010 Phys. Rev. E 81 016607
[14] Manaa M, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146
[15] Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2008 Nat. Phys. 4 72
[16] Shan T R, Wixom R R, Mattsson A E, Thompson A P 2013 J. Phys. Chem. B 117 928
[17] Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696
[18] Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z, Zhang C Y 2013 J. Phys. Chem. C 117 24368
[19] Manaa M R, Reed E J, Fried L E, Goldman N 2009 J. Am. Chem. Soc. 131 5483
[20] Mundy C J, Curioni A, Goldman N, Kuo I F W, Reed E J, Fried L E, Ianuzzi M 2008 J. Chem. Phys. 128 184701
[21] Goldman N, Fried L E, Mundy C J, Kuo I F W, Curioni A, Reed E J 2007 AIP Conf. Proc. 955 443
[22] van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396
[23] Brenner D W 1990 Physical Review B 42 9458
[24] Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016
[25] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]
[26] Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501
[27] Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960
[28] Plimpton S J 1995 J. Comput. Phys. 117 1
[29] Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245
[30] Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074
[31] Strachan A, Kober E W, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502
[32] Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard W A 2009 J. Phys. Chem. A 113 10619
[33] Viecelli J A, Ree F H 2000 Journal of Applied Physics 88 683
[34] Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352
[35] Vasil'ev A A, Pinaev A V 2008 Combustion, Explosion, and Shock Waves. 44 317
[36] Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506
[37] Rice M H, McQueen R G, Walsh J M 1958 Solid State Phys. 6 1
[38] Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p648
[39] Smith A L, Allen A, Belak J, Boehly T, Hauer A, B. Holian B, Kalantar D, Kyrala G, Lee R W, Lomdahl P, Meyers M A, Paisley D, Pollaine S, Remington B, Swift D C, Weber S, Wark J S 2001 Phys. Rev. Lett. 86 2349
[40] Lane J M D, Marder M P 2006 arXiv preprint cond-mat/0607335
[41] Yang Z W, Huang H, Li H Z, Zhou X Q, Li J S, Nie F D 2012 Chinese Journal of Energetic Materials 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 李金山, 聂福德 2012 含能材料 20 256]
计量
- 文章访问数: 6345
- PDF下载量: 704
- 被引次数: 0