搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯共晶冲击起爆过程的分子动力学模拟

刘海 李启楷 何远航

引用本文:
Citation:

六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯共晶冲击起爆过程的分子动力学模拟

刘海, 李启楷, 何远航

Molecular dynamics simulations of shock initiation of hexanitrohexaazaisowurtzitane/trinitrotoluene cocrystal

Liu Hai, Li Qi-Kai, He Yuan-Hang
PDF
导出引用
  • 多尺度冲击技术可以准确的再现含能材料冲击起爆过程中冲击波阵面及反应区内的热力学和化学反应路径. 文本利用反应力场分子动力学(ReaxFF-MD)对六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯(CL20/TNT)1:1共晶沿110方向以610 kms-1的冲击速度进行冲击压缩模拟. 产物识别分析显示当冲击速度7 kms-1时, 冲击激发化学反应发生, 并且利用Rankine-Hugoniot守恒关系求得冲击起爆压力为24.56 GPa. 再者, 比较了冲击速度与粒子速度, 冲击速度与冲击诱发形变的关系, 当冲击速度为78 kms-1时, 冲击起爆发生, 系统经历弹- 塑性相变, 初级化学反应及次级化学反应, 并且相变与化学反应同时进行, 对于较高的冲击波速度(9 kms-1), 共晶系统内为过驱响应, 热力学参数均出现陡峭的梯度变化, 冲击波压缩材料直接阶跃至塑性变形阶段, 并且此阶段出现大量的碳原子.
    Multiscale shock technique (MSST) has been shown to accurately reproduce the thermodynamic and chemical reaction paths throughout the shock wave fronts and reaction zone of shock initiation of energetic materials. A 1:1 cocrystal of hexanitrohexaazaisowurtzitane/trinitrotoluene (CL20/TNT) is shocked along the 110 orientations under the conditions of shock velocities lying in the range 610 kms-1 in ReaxFF molecular dynamics simulations. Products recognition analysis leads to reactions occurring with shock velocities of 7 kms-1 or stronger, and the shock initiation pressure is 24.56 GPa obtained from the conservation of Rankine-Hugoniot relation. Comparisons of the relationships are carried out between shock velocity and particle velocity, shock velocities and elastic-plastic transition. During shock initiation with the shock velocities lying in the range 78 kms-1, the shocked systems correspond to an elastic-plastic deformation, primary chemical reactions, and secondary chemical reactions. And the elastic-plastic transition coincides with the chemical reaction at higher shock velocity (9 kms-1), the cocrystal material response is over-driven, and all the thermodynamic properties show steep gradients, the compressed material by the shock wave steps into the plastic region, and a large number of carbon atoms appear in the early stage of over-driven shock initiation.
    [1]

    Zumbrun K 2011 Arch. Rational Mech. Anal. 200 141

    [2]

    Bolton O, Matzger J A 2011 Angew. Chem. Int. Ed. 50 8960

    [3]

    Yang Z W, Li H Z, Zhou X Q, Zhang C Y, Huang H, Li J S, Nie F D 2012 Cryst. Growth Des. 12 5155

    [4]

    Bolton O, Simke L R, Pagoria P F, Matzger A J 2012 Cryst. Growth Des. 12 4311

    [5]

    Wei C X, Huang H, Duan X H, Pei C H 2011 Propellants Explos. Pyrotech. 36 416

    [6]

    Landenberger K B, Matzger A J 2010 Crystal Growth & Design 10 5341

    [7]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 62 208202]

    [8]

    Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P S, Germann T C, Holian B L 2001 Phys. Rev. E. 63 016121

    [9]

    Heim A J, Jensen N G, Kober E M, Germann T C 2008 Phys. Rev. E 78 046710

    [10]

    Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503

    [11]

    Reed E J, Fried L E, Manaa M R, Joannopoulos J D 2005 Chemistry at Extreme Conditions (New York: Elsevier) p297

    [12]

    Reed E J, Fried L E, Henshaw W D, Tarver C M 2006 Phys. Rev. E 74 056706

    [13]

    Reed E J, Maiti A, Fried L E 2010 Phys. Rev. E 81 016607

    [14]

    Manaa M, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146

    [15]

    Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2008 Nat. Phys. 4 72

    [16]

    Shan T R, Wixom R R, Mattsson A E, Thompson A P 2013 J. Phys. Chem. B 117 928

    [17]

    Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [18]

    Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z, Zhang C Y 2013 J. Phys. Chem. C 117 24368

    [19]

    Manaa M R, Reed E J, Fried L E, Goldman N 2009 J. Am. Chem. Soc. 131 5483

    [20]

    Mundy C J, Curioni A, Goldman N, Kuo I F W, Reed E J, Fried L E, Ianuzzi M 2008 J. Chem. Phys. 128 184701

    [21]

    Goldman N, Fried L E, Mundy C J, Kuo I F W, Curioni A, Reed E J 2007 AIP Conf. Proc. 955 443

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [23]

    Brenner D W 1990 Physical Review B 42 9458

    [24]

    Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [25]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]

    [26]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [27]

    Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960

    [28]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [29]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [30]

    Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074

    [31]

    Strachan A, Kober E W, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502

    [32]

    Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard W A 2009 J. Phys. Chem. A 113 10619

    [33]

    Viecelli J A, Ree F H 2000 Journal of Applied Physics 88 683

    [34]

    Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352

    [35]

    Vasil'ev A A, Pinaev A V 2008 Combustion, Explosion, and Shock Waves. 44 317

    [36]

    Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506

    [37]

    Rice M H, McQueen R G, Walsh J M 1958 Solid State Phys. 6 1

    [38]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p648

    [39]

    Smith A L, Allen A, Belak J, Boehly T, Hauer A, B. Holian B, Kalantar D, Kyrala G, Lee R W, Lomdahl P, Meyers M A, Paisley D, Pollaine S, Remington B, Swift D C, Weber S, Wark J S 2001 Phys. Rev. Lett. 86 2349

    [40]

    Lane J M D, Marder M P 2006 arXiv preprint cond-mat/0607335

    [41]

    Yang Z W, Huang H, Li H Z, Zhou X Q, Li J S, Nie F D 2012 Chinese Journal of Energetic Materials 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 李金山, 聂福德 2012 含能材料 20 256]

  • [1]

    Zumbrun K 2011 Arch. Rational Mech. Anal. 200 141

    [2]

    Bolton O, Matzger J A 2011 Angew. Chem. Int. Ed. 50 8960

    [3]

    Yang Z W, Li H Z, Zhou X Q, Zhang C Y, Huang H, Li J S, Nie F D 2012 Cryst. Growth Des. 12 5155

    [4]

    Bolton O, Simke L R, Pagoria P F, Matzger A J 2012 Cryst. Growth Des. 12 4311

    [5]

    Wei C X, Huang H, Duan X H, Pei C H 2011 Propellants Explos. Pyrotech. 36 416

    [6]

    Landenberger K B, Matzger A J 2010 Crystal Growth & Design 10 5341

    [7]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 62 208202]

    [8]

    Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P S, Germann T C, Holian B L 2001 Phys. Rev. E. 63 016121

    [9]

    Heim A J, Jensen N G, Kober E M, Germann T C 2008 Phys. Rev. E 78 046710

    [10]

    Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503

    [11]

    Reed E J, Fried L E, Manaa M R, Joannopoulos J D 2005 Chemistry at Extreme Conditions (New York: Elsevier) p297

    [12]

    Reed E J, Fried L E, Henshaw W D, Tarver C M 2006 Phys. Rev. E 74 056706

    [13]

    Reed E J, Maiti A, Fried L E 2010 Phys. Rev. E 81 016607

    [14]

    Manaa M, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146

    [15]

    Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2008 Nat. Phys. 4 72

    [16]

    Shan T R, Wixom R R, Mattsson A E, Thompson A P 2013 J. Phys. Chem. B 117 928

    [17]

    Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [18]

    Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z, Zhang C Y 2013 J. Phys. Chem. C 117 24368

    [19]

    Manaa M R, Reed E J, Fried L E, Goldman N 2009 J. Am. Chem. Soc. 131 5483

    [20]

    Mundy C J, Curioni A, Goldman N, Kuo I F W, Reed E J, Fried L E, Ianuzzi M 2008 J. Chem. Phys. 128 184701

    [21]

    Goldman N, Fried L E, Mundy C J, Kuo I F W, Curioni A, Reed E J 2007 AIP Conf. Proc. 955 443

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [23]

    Brenner D W 1990 Physical Review B 42 9458

    [24]

    Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [25]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]

    [26]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [27]

    Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960

    [28]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [29]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [30]

    Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074

    [31]

    Strachan A, Kober E W, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502

    [32]

    Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard W A 2009 J. Phys. Chem. A 113 10619

    [33]

    Viecelli J A, Ree F H 2000 Journal of Applied Physics 88 683

    [34]

    Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352

    [35]

    Vasil'ev A A, Pinaev A V 2008 Combustion, Explosion, and Shock Waves. 44 317

    [36]

    Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506

    [37]

    Rice M H, McQueen R G, Walsh J M 1958 Solid State Phys. 6 1

    [38]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p648

    [39]

    Smith A L, Allen A, Belak J, Boehly T, Hauer A, B. Holian B, Kalantar D, Kyrala G, Lee R W, Lomdahl P, Meyers M A, Paisley D, Pollaine S, Remington B, Swift D C, Weber S, Wark J S 2001 Phys. Rev. Lett. 86 2349

    [40]

    Lane J M D, Marder M P 2006 arXiv preprint cond-mat/0607335

    [41]

    Yang Z W, Huang H, Li H Z, Zhou X Q, Li J S, Nie F D 2012 Chinese Journal of Energetic Materials 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 李金山, 聂福德 2012 含能材料 20 256]

  • [1] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用.  , 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [3] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱.  , 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [4] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析.  , 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究.  , 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [7] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [8] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为.  , 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [9] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究.  , 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [10] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择.  , 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [11] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究.  , 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [12] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟.  , 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [13] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究.  , 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [14] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究.  , 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [15] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [16] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究.  , 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 朱耀产, 王锦程, 杨根仓, 杨玉娟. 三种变速条件下共晶生长的多相场法模拟.  , 2007, 56(9): 5542-5547. doi: 10.7498/aps.56.5542
    [19] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.  , 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟.  , 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
计量
  • 文章访问数:  6345
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-09
  • 修回日期:  2014-08-29
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map