-
利用混合物理化学气相沉积法在石墨衬底上制备出了晶形为六角结构、厚度不同、径向尺寸不一的MgB2单晶纳米晶片. 利用纳米定向转移技术将此晶片转移到了碳支持膜铜网上, 以便对其精细结构等物性进行表征. 电输运测量和磁性测量结果都表明晶片具有超导电性: Tconset=38 K, Tc(0)=33 K. 扫描电子显微镜图像表明, 晶片表面平整、厚度分布在几个纳米到200 nm之间, 宽度从几微米到上百微米; 高分辨透射电镜图像显示出晶片具有周期性晶格条纹. 选区电子衍射数据与MgB2已有的单晶衍射数据相符. 这些测量结果证实了其确为高质量单晶MgB2超导纳米晶片. 本文不仅提出了一种全新的制备单晶MgB2的方法, 也观察到了纳米尺度MgB2单晶的零电阻现象, 为后续的磁通钉扎、纳米力学性能等领域的深入研究提供了合适的素材.
-
关键词:
- 单晶MgB2 /
- 超导纳米晶片 /
- 零电阻 /
- 混合物理化学气相沉积法
This report is focused on the MgB2 nanosheets which have a hexagonal single crystal structure with variable thickness and different radial dimensions. The nanosheets are fabricated by hybird physical-chemical vapor deposition for the first time, as far as we know, and meanwhile they can be site-specific transferred so as to make physical properties measurement. Results of electrical and magnetic measurements indicate that the nanosheets is superconductive with a Tconset=38 K, Tc (0)=33 K. The images of scanning electrical microscope show that the nanosheets have a nanoscale thickness and have not only a large scale in wildth from several microns to hundreds of microns but also a flat cleaning surface. The selected area electrical diffraction data is consistent with the early report of MgB2 diffraction. According to those results, the single crystal nanosheets with high quality can be surely indentified as MgB2. It suggests a new technique for MgB2 single crystal fabrication, and a zero electrical behavior is observed in nanoscale single crystal MgB2. This could be a new opportunity to make a right material for the afterward research such as flux vortices, nanoscale mechanical properties.-
Keywords:
- single crystal MgB2 /
- superconducting nanosheets /
- zero electrical behavior /
- hybrid physical-chemical vapor deposition
[1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63
[2] Kortus J, Mazin I I, Belashchenko K D, Antropov V P, Boyer L L 2001 Phys. Rev. Lett. 86 4656
[3] Finnemore D K, Ostenson J E, Bud'ko S L, Lapertot G, Canfield P C 2001 Phys. Rev. Lett. 86 2420
[4] Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jia Y, Wen H H, Xi X X 2008 J. Appl. Phys. 104 013924
[5] Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22
[6] Souma S, Machida Y, Sato T, Takahashi T, Matsui H, Wang S C, Ding H, Kaminski A, Campuzano J C, Sasaki S, Kadowaki K 2003 Nature 423 65
[7] Liu A Y, Mazin I I, Kortus J 2001 Phys. Rev. Lett. 87 087005
[8] Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015
[9] Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 60 087401]
[10] Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103
[11] Zhang C, Wang Y, Wang D, Zhang Y, Liu Z H, Feng Q R, Gan Z Z 2013 J. Appl. Phys. 114 023903
[12] Kumakura H, Matsumoto A, Fuji H, Togano K 2001 Appl. Phys. Lett. 79 2435
[13] Wu Y, Messer B, Yang P 2001 Adv. Mater. 13 1487
[14] Nath M, Parkinson B A 2006 Adv. Mater. 18 1865
[15] Jha A K, Khare N 2009 Supercond. Sci. Technol. 22 075017
[16] Lai S H, Liu S C, Lan M D 2007 J. Cryst. Growth 304 460
[17] Yang Q, Sha J, Ma X Y, Wang J, Niu J, Yang D 2004 IEEE 13th International Conference on Semiconducting and Insulating Materials Beijing, China, 20-25 September, 2004 p164
[18] Nath M, Parkinson B A 2007 J. Am. Chem. Soc. 129 113
[19] Wang Y Z, Zhuang C G, Gao J Y, Shan X D, Zhang J M, Liao Z M, Xu H J, Yu D P, Feng Q R 2009 J. Am. Chem. Soc. 131 2436
[20] Chen W M, Liu W, Chen C P, Wang R M, Feng Q R 2011 Cryst. Eng. Commun. 13 3959
[21] Wu C S, Chang Y C, Chen W M, Chen C P, Feng Q R 2012 Nanotechnology 23 465706
[22] Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S, Li Q, Lettieri J, Schlom D G, Tian W, Pan X, Liu Z K 2002 Nat. Mater. 1 35
[23] Joseph G 2003 Scanning Electron Microscopy and X-Ray Microanalysis (3rd Ed.) (New York: Kluwer Academic Plenum Publishers) p72
[24] Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700
[25] Liu C, Hu Z, Wu Q, Wang X Z, Chen Y, Sang H, Zhu J M, Deng S Z, Xu N S 2005 J. Am. Chem. Soc. 127 1318
[26] Sanc I 1990 Pattern 00-041-1478 Graphite-2H Polytechna (Czechoslovakia: Panska)
[27] Zhu R, Zhao Q, Xu J, Liu B, Gao J Y, Zhang J M, Zhu W G, Xu H J, Sun Y H, Fu Q, Chen L, Yu D P 2012 Cryst. Eng. Commun. 14 2
[28] Wang J, Zhuang C G, Li J, Wu Z W, Li S, Chu H F, Feng Q R, Zheng D N 2009 Supercond. Sci. Technol. 22 045020
[29] Zhang C Y, Wang Y B, Hu W W, Feng Q R 2010 Supercond. Sci. Technol. 23 065017
[30] Xi X X 2009 Supercond. Sci. Technol. 22 043001
-
[1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63
[2] Kortus J, Mazin I I, Belashchenko K D, Antropov V P, Boyer L L 2001 Phys. Rev. Lett. 86 4656
[3] Finnemore D K, Ostenson J E, Bud'ko S L, Lapertot G, Canfield P C 2001 Phys. Rev. Lett. 86 2420
[4] Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jia Y, Wen H H, Xi X X 2008 J. Appl. Phys. 104 013924
[5] Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22
[6] Souma S, Machida Y, Sato T, Takahashi T, Matsui H, Wang S C, Ding H, Kaminski A, Campuzano J C, Sasaki S, Kadowaki K 2003 Nature 423 65
[7] Liu A Y, Mazin I I, Kortus J 2001 Phys. Rev. Lett. 87 087005
[8] Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015
[9] Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 60 087401]
[10] Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103
[11] Zhang C, Wang Y, Wang D, Zhang Y, Liu Z H, Feng Q R, Gan Z Z 2013 J. Appl. Phys. 114 023903
[12] Kumakura H, Matsumoto A, Fuji H, Togano K 2001 Appl. Phys. Lett. 79 2435
[13] Wu Y, Messer B, Yang P 2001 Adv. Mater. 13 1487
[14] Nath M, Parkinson B A 2006 Adv. Mater. 18 1865
[15] Jha A K, Khare N 2009 Supercond. Sci. Technol. 22 075017
[16] Lai S H, Liu S C, Lan M D 2007 J. Cryst. Growth 304 460
[17] Yang Q, Sha J, Ma X Y, Wang J, Niu J, Yang D 2004 IEEE 13th International Conference on Semiconducting and Insulating Materials Beijing, China, 20-25 September, 2004 p164
[18] Nath M, Parkinson B A 2007 J. Am. Chem. Soc. 129 113
[19] Wang Y Z, Zhuang C G, Gao J Y, Shan X D, Zhang J M, Liao Z M, Xu H J, Yu D P, Feng Q R 2009 J. Am. Chem. Soc. 131 2436
[20] Chen W M, Liu W, Chen C P, Wang R M, Feng Q R 2011 Cryst. Eng. Commun. 13 3959
[21] Wu C S, Chang Y C, Chen W M, Chen C P, Feng Q R 2012 Nanotechnology 23 465706
[22] Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S, Li Q, Lettieri J, Schlom D G, Tian W, Pan X, Liu Z K 2002 Nat. Mater. 1 35
[23] Joseph G 2003 Scanning Electron Microscopy and X-Ray Microanalysis (3rd Ed.) (New York: Kluwer Academic Plenum Publishers) p72
[24] Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700
[25] Liu C, Hu Z, Wu Q, Wang X Z, Chen Y, Sang H, Zhu J M, Deng S Z, Xu N S 2005 J. Am. Chem. Soc. 127 1318
[26] Sanc I 1990 Pattern 00-041-1478 Graphite-2H Polytechna (Czechoslovakia: Panska)
[27] Zhu R, Zhao Q, Xu J, Liu B, Gao J Y, Zhang J M, Zhu W G, Xu H J, Sun Y H, Fu Q, Chen L, Yu D P 2012 Cryst. Eng. Commun. 14 2
[28] Wang J, Zhuang C G, Li J, Wu Z W, Li S, Chu H F, Feng Q R, Zheng D N 2009 Supercond. Sci. Technol. 22 045020
[29] Zhang C Y, Wang Y B, Hu W W, Feng Q R 2010 Supercond. Sci. Technol. 23 065017
[30] Xi X X 2009 Supercond. Sci. Technol. 22 043001
计量
- 文章访问数: 6019
- PDF下载量: 770
- 被引次数: 0