搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期受击陀螺系统波函数的分形

周洁 杨双波

引用本文:
Citation:

周期受击陀螺系统波函数的分形

周洁, 杨双波

Wave function fractal dimensions for the periodically kicked free top

Zhou Jie, Yang Shuang-Bo
PDF
导出引用
  • 研究了周期受击陀螺系统波函数的分形. 发现在打击强度系数较弱时 (即≤ 1时), 相空间是规则的, 分形维接近于1; 随着打击强度系数的增大, 相空间开始变得混沌, 分形维也随之增大; 当打击强度系数达到6时, 相空间完全混沌, 分形维将达到最大值, 此时若继续增大打击强度系数, 分形维保持基本不变.
    In this paper we study the fractal dimensions of wave function for the periodically kicked free top. We find that when kicking strength coefficient is less than or equal to 1 (≤ 1), the motion in classical phase space is regular, the fractal dimension is about 1, and as kicking strength increases, the motion in classical phase space becomes chaotic and the fractal dimension also increases. And we also find that when kicking strength is greater than or equal to 6 (≥ 6), the phase space becomes completely chaotic, the fractal dimension reaches its maximum value 1.5 and will keep this value.
    [1]

    Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer) pp254-281

    [2]

    Hönig A, Wintgen D 1989 Phys. Rev. A 39 5642

    [3]

    Yang S B, Liu D K 2013 J. Nanjing Normal Univ. (Natural Science Edition) 36 1 (in Chinese) [杨双波, 刘达可 2013 南京师范大学报 (自然科学版) 36 1]

    [4]

    Bohigas O, Haq R U, Pandey A 1985 Phys. Rev. Lett. 54 1645

    [5]

    Huang L, Lai Y C, Celso G 2011 Chaos 21 013102

    [6]

    Seligman T H, Verbaarschot J M, Zirnbauer M R 1984 Phys. Rev. Lett. 53 215

    [7]

    Davis M J, Heller E J 1981 J. Chem. Phys. 75 3916

    [8]

    Lin W A, Ballentine L E 1992 Phys. Rev. A 45 3637

    [9]

    Liu D K, Yang S B 2014 J. Nanjing Normal Univ. (Natural Science Edition) 37 2 (in Chinese) [刘达可, 杨双波 2014 南京师范大学报 (自然科学版) 37 2]

    [10]

    Tomsovic S, Heller E J 1991 Phys. Rev. Lett. 67 664

    [11]

    Stratt R M, Handy N C, Miller W H 1979 J. Chem. Phys. 71 3311

    [12]

    McDonald S W 1983 Ph. D. Dissertation (Berkeley: University of California)

    [13]

    Heller E J 1984 Phys. Rev. Lett. 53 1515

    [14]

    Qin C C, Yang S B 2014 Acta Phys. Sin. 63 140507 (in Chinese) [秦陈陈, 杨双波 2014 63 140507]

    [15]

    Mandelbrot B B 1983 the Fractal Geometry of Nature (New York: Freeman)

    [16]

    Zhang J Z 1997 Fractal (Beijing: Qinghua University Press)

    [17]

    Harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874

    [18]

    Hofstadter D R 1976 Phys. Rev. B 14 2239

    [19]

    Anderson P W 1958 Phys. Rev. 109 1492

    [20]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355

    [21]

    Wang J, Gong J B 2009 Phys. Rev. Lett. 102 244102

    [22]

    Wang J, Gong J B 2010 Phys. Rev. E 81 026204

    [23]

    Bandyopadhyay J N, Wang J, Gong J B 2010 Phys. Rev. E 81 066212

    [24]

    Martin J, Giraud O, Georgeot B 2008 Phys. Rev. E 77 035201

    [25]

    Deng S H, Gao S, Li Y P, Xu X Y, Lin S L 2010 Chin. Phys. B 19 040511

    [26]

    Ren X C, Guo L X 2008 Chin. Phys. B 17 2956

    [27]

    Yang Q N, Zhang Y H, Cai X J, Jiang G H, Xu X Y 2013 Acta Phys. Sin. 62 080505 (in Chinese) [杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友 2013 62 080505]

    [28]

    Nakamura K, Okazaki Y, Bishop A R 1986 Phys. Rev. Lett. 57 5

    [29]

    Haak F, Kus M, Scharf R 1987 Z.Phys. B: Condens. Matter 65 381

  • [1]

    Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer) pp254-281

    [2]

    Hönig A, Wintgen D 1989 Phys. Rev. A 39 5642

    [3]

    Yang S B, Liu D K 2013 J. Nanjing Normal Univ. (Natural Science Edition) 36 1 (in Chinese) [杨双波, 刘达可 2013 南京师范大学报 (自然科学版) 36 1]

    [4]

    Bohigas O, Haq R U, Pandey A 1985 Phys. Rev. Lett. 54 1645

    [5]

    Huang L, Lai Y C, Celso G 2011 Chaos 21 013102

    [6]

    Seligman T H, Verbaarschot J M, Zirnbauer M R 1984 Phys. Rev. Lett. 53 215

    [7]

    Davis M J, Heller E J 1981 J. Chem. Phys. 75 3916

    [8]

    Lin W A, Ballentine L E 1992 Phys. Rev. A 45 3637

    [9]

    Liu D K, Yang S B 2014 J. Nanjing Normal Univ. (Natural Science Edition) 37 2 (in Chinese) [刘达可, 杨双波 2014 南京师范大学报 (自然科学版) 37 2]

    [10]

    Tomsovic S, Heller E J 1991 Phys. Rev. Lett. 67 664

    [11]

    Stratt R M, Handy N C, Miller W H 1979 J. Chem. Phys. 71 3311

    [12]

    McDonald S W 1983 Ph. D. Dissertation (Berkeley: University of California)

    [13]

    Heller E J 1984 Phys. Rev. Lett. 53 1515

    [14]

    Qin C C, Yang S B 2014 Acta Phys. Sin. 63 140507 (in Chinese) [秦陈陈, 杨双波 2014 63 140507]

    [15]

    Mandelbrot B B 1983 the Fractal Geometry of Nature (New York: Freeman)

    [16]

    Zhang J Z 1997 Fractal (Beijing: Qinghua University Press)

    [17]

    Harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874

    [18]

    Hofstadter D R 1976 Phys. Rev. B 14 2239

    [19]

    Anderson P W 1958 Phys. Rev. 109 1492

    [20]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355

    [21]

    Wang J, Gong J B 2009 Phys. Rev. Lett. 102 244102

    [22]

    Wang J, Gong J B 2010 Phys. Rev. E 81 026204

    [23]

    Bandyopadhyay J N, Wang J, Gong J B 2010 Phys. Rev. E 81 066212

    [24]

    Martin J, Giraud O, Georgeot B 2008 Phys. Rev. E 77 035201

    [25]

    Deng S H, Gao S, Li Y P, Xu X Y, Lin S L 2010 Chin. Phys. B 19 040511

    [26]

    Ren X C, Guo L X 2008 Chin. Phys. B 17 2956

    [27]

    Yang Q N, Zhang Y H, Cai X J, Jiang G H, Xu X Y 2013 Acta Phys. Sin. 62 080505 (in Chinese) [杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友 2013 62 080505]

    [28]

    Nakamura K, Okazaki Y, Bishop A R 1986 Phys. Rev. Lett. 57 5

    [29]

    Haak F, Kus M, Scharf R 1987 Z.Phys. B: Condens. Matter 65 381

  • [1] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究.  , 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [2] 周洁, 杨双波. 周期受击陀螺系统随时间演化波函数的多重分形.  , 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [3] 王廷志, 孙现亭, 韩月林. 相空间中相对运动完整力学系统的共形不变性与守恒量.  , 2014, 63(10): 104502. doi: 10.7498/aps.63.104502
    [4] 范洪义. 相干态在参数量子相空间的两维正态分布.  , 2014, 63(2): 020302. doi: 10.7498/aps.63.020302
    [5] 李名锐, 周刚, 初哲, 戴湘晖, 吴海军, 范如玉. 共振价键波函数在高压液氢量子蒙卡模拟中的适用性研究.  , 2013, 62(15): 156101. doi: 10.7498/aps.62.156101
    [6] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [7] 熊涛, 张杰, 陈祥磊, 叶邦角, 杜淮江, 翁惠民. 单晶固体中正电子波函数的计算.  , 2010, 59(10): 7374-7377. doi: 10.7498/aps.59.7374
    [8] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性.  , 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [9] 徐志君, 聂青苗, 李鹏华. 用遗传算法研究一维光晶格中玻色凝聚气体基态波函数.  , 2009, 58(5): 2878-2883. doi: 10.7498/aps.58.2878
    [10] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量.  , 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [11] 方建会, 王 鹏, 丁 宁. 相空间中力学系统的Lie-Mei对称性.  , 2006, 55(8): 3821-3824. doi: 10.7498/aps.55.3821
    [12] 袁通全. 一类相空间中的准几率分布函数系.  , 2006, 55(10): 5014-5017. doi: 10.7498/aps.55.5014
    [13] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量.  , 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [14] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量.  , 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [15] 李兴华, 杨亚天. 氢原子波函数的玻色算子表示.  , 2005, 54(1): 12-17. doi: 10.7498/aps.54.12
    [16] 王忠纯, 王 琪, 顾永建, 郭光灿. 经典外场驱动下Tavis-Cummings系统的能量本征值和波函数.  , 2005, 54(1): 107-112. doi: 10.7498/aps.54.107
    [17] 龙姝明, 冉启武, 熊晓军. 基态球谐振子的空间“塌陷”.  , 2005, 54(3): 1044-1047. doi: 10.7498/aps.54.1044
    [18] 楼智美. 相空间中二阶线性非完整系统的形式不变性.  , 2004, 53(7): 2046-2049. doi: 10.7498/aps.53.2046
    [19] 方建会, 张鹏玉. 相空间中变质量力学系统的Hojman守恒量.  , 2004, 53(12): 4041-4044. doi: 10.7498/aps.53.4041
    [20] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数.  , 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
计量
  • 文章访问数:  5733
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-13
  • 修回日期:  2014-07-17
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map