搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再入过载的匹配渐进展开分析与卸载方法研究

杜昕 李海阳

引用本文:
Citation:

再入过载的匹配渐进展开分析与卸载方法研究

杜昕, 李海阳

Analysis and relief method of reentry aerodynamic load based on matched asymptotic expansions method

Du Xin, Li Hai-Yang
PDF
导出引用
  • 探月飞船返回地球时将以第二宇宙速度再入地球大气层,面临极其严苛的气动环境,因此对于再入气动过载的分析具有重要意义. 再入运动方程是一组非线性很强的常微分方程,数值方法计算量大,不适用于在线任务. 因此,本文采用一种近似解法对气动过载进行分析. 首先,基于匹配渐进展开方法将再入纵向运动解在大气外层区域与内层区域分别展开,得到统一形式的闭型近似解,在此基础上分段求解气动过载,并与精确解进行对比分析. 其次,利用闭型近似解,通过当前状态反解虚拟初始条件,在此基础上提出初次过载峰值的解析预测方法,并分析了不同条件下预测的相对误差变化规律. 最后,基于过载峰值的解析预测对飞船的初次再入过程进行卸载,将飞船在再入过程中耗散的总能量进行重新分配,并通过蒙特卡罗飞行仿真试验验证了卸载方法的有效性.
    Reentry velocity of lunar module reaches the second cosmic velocity, which could make the aerodynamic environment insupportable. So it is essential to analysis the reentry aerodynamic load. The equation of motion for reentry vehicle is a group of ordinary differential equations, and numerical methods are inadequate for online mission because their computation amount is too large. An analytical method of solving the reentry equation of motion is proposed in this paper to analyze the reentry aerodynamic load. First, matched asymptotic method is used to obtain solutions of longitudinal equation of motion in outer and inner region independently and combine them to obtain a unified closed-form solution. Reentry aerodynamic load has been analyzed in three fragments using the closed-form solution, and approximate solution of load is compared with the exact solution. Second, suppositional initial conditions are obtained by solving the closed-form solution using current state, then an analytical method of predicting the first load peak is proposed, and the relative prediction error is analyzed for different bank angles. Third, the load relief method based on load peak prediction is proposed, which can redistribute the total dissipated energy in the whole reentry process, and the validity of the method is verified by Monte Carlo simulation.
    • 基金项目: 国家自然科学基金(批准号:11372345)和国家重点基础研究发展计划(批准号:2013CB733100)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372345) and the National Basic Research Program of China (Grant No. 2013CB733100).
    [1]

    Bairstow S H 2006 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Techlonogy)

    [2]

    Hwang I, Li J, Du D 2009 J. Dyn. Sys. Meas. Control. 131 051010

    [3]

    Wu H B, Zhang Y F, Mei F X 2006 Acta Phys. Sin. 55 4987 (in Chinese) [吴惠彬, 张永发, 梅凤翔 2006 55 4987]

    [4]

    Zhang R C, Wang L H, Yue C Q 2007 Acta Phys. Sin. 56 3050 (in Chinese) [张睿超, 王连海, 岳成庆 2007 56 3050]

    [5]

    Hereman W, Banerjee P, Korpel A 1986 J. Phys. A 19 19

    [6]

    Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A 26 6027

    [7]

    Mei F X, Wu H B, Zhang Y F 2006 Chin. Phys. 15 1662

    [8]

    Hereman W, Takaota M 1990 J. Phys. A 23 4805

    [9]

    Panigrahi M, Dash P C 1999 Phys. Lett. A 261 284

    [10]

    Li Z B, Pan S Q 2001 Acta Phys. Sin. 50 402 (in Chinese) [李志斌, 潘素起 2001 50 402]

    [11]

    Zhao H Y 1997 Reentry Dynamics and Guidance (Changsha: National University of Defense Technology Press) p114 (in Chinese) [赵汉元 1997 飞行器再入动力学和制导 (长沙: 国防科技大学出版社) 第114页]

    [12]

    Loh W H 1965 AIAA J. 3 1688

    [13]

    Mititelu G 2009 Celest. Mech. Dyn. Astr. 103 327

    [14]

    Gorbonos D, Kol B 2005 Class. Quantum. Grav. 22 3935

    [15]

    Burke W L 1971 J. Math. Phys. 12 401

    [16]

    Gorbonos D, Kol B 2004 J. High Energy Phys. 2004 53

    [17]

    Lin W T, Lin Y H, Mo J Q 2012 Chin. Phys. B 21 010204

    [18]

    Shi Y Y, Pottsepp L, Eckstein M C 1970 AIAA J. 9 736

    [19]

    Vinh N X, Kuo Z S 1996 1996 AIAA/AAS Astrodynamics Conference, San Diego, America, July 29-31, 1996 p212

    [20]

    Kluever C A 2008 J. Guidance. 31 1531

    [21]

    Mease K D, McCreary F A 1985 12th Atmospheric Flight Mechanics Conference Snowmass, America, August 19-21, 1985 p408

    [22]

    Lu P 2008 J. Guidance. 31 1067

    [23]

    Shen H X, Zhou J P, Peng Q B, Li H Y 2012 Sci. China Tech. Sci. 55 2561

  • [1]

    Bairstow S H 2006 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Techlonogy)

    [2]

    Hwang I, Li J, Du D 2009 J. Dyn. Sys. Meas. Control. 131 051010

    [3]

    Wu H B, Zhang Y F, Mei F X 2006 Acta Phys. Sin. 55 4987 (in Chinese) [吴惠彬, 张永发, 梅凤翔 2006 55 4987]

    [4]

    Zhang R C, Wang L H, Yue C Q 2007 Acta Phys. Sin. 56 3050 (in Chinese) [张睿超, 王连海, 岳成庆 2007 56 3050]

    [5]

    Hereman W, Banerjee P, Korpel A 1986 J. Phys. A 19 19

    [6]

    Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A 26 6027

    [7]

    Mei F X, Wu H B, Zhang Y F 2006 Chin. Phys. 15 1662

    [8]

    Hereman W, Takaota M 1990 J. Phys. A 23 4805

    [9]

    Panigrahi M, Dash P C 1999 Phys. Lett. A 261 284

    [10]

    Li Z B, Pan S Q 2001 Acta Phys. Sin. 50 402 (in Chinese) [李志斌, 潘素起 2001 50 402]

    [11]

    Zhao H Y 1997 Reentry Dynamics and Guidance (Changsha: National University of Defense Technology Press) p114 (in Chinese) [赵汉元 1997 飞行器再入动力学和制导 (长沙: 国防科技大学出版社) 第114页]

    [12]

    Loh W H 1965 AIAA J. 3 1688

    [13]

    Mititelu G 2009 Celest. Mech. Dyn. Astr. 103 327

    [14]

    Gorbonos D, Kol B 2005 Class. Quantum. Grav. 22 3935

    [15]

    Burke W L 1971 J. Math. Phys. 12 401

    [16]

    Gorbonos D, Kol B 2004 J. High Energy Phys. 2004 53

    [17]

    Lin W T, Lin Y H, Mo J Q 2012 Chin. Phys. B 21 010204

    [18]

    Shi Y Y, Pottsepp L, Eckstein M C 1970 AIAA J. 9 736

    [19]

    Vinh N X, Kuo Z S 1996 1996 AIAA/AAS Astrodynamics Conference, San Diego, America, July 29-31, 1996 p212

    [20]

    Kluever C A 2008 J. Guidance. 31 1531

    [21]

    Mease K D, McCreary F A 1985 12th Atmospheric Flight Mechanics Conference Snowmass, America, August 19-21, 1985 p408

    [22]

    Lu P 2008 J. Guidance. 31 1067

    [23]

    Shen H X, Zhou J P, Peng Q B, Li H Y 2012 Sci. China Tech. Sci. 55 2561

  • [1] 张凤国, 刘军, 何安民, 赵福祺, 王裴. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用.  , 2022, 71(24): 244601. doi: 10.7498/aps.71.20221340
    [2] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究.  , 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [3] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析.  , 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [4] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究.  , 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [5] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法.  , 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [6] 谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华. 金属Bi的卸载熔化实验研究.  , 2013, 62(3): 036401. doi: 10.7498/aps.62.036401
    [7] 杨沛, 陈勇, 李志斌. 离散修正KdV方程的解析近似解.  , 2010, 59(6): 3668-3673. doi: 10.7498/aps.59.3668
    [8] 李永宏, 刘福生, 马海云, 程小理, 马小娟, 孙燕云, 张明建, 薛学东. 动态荷载下石英玻璃的透光性及损伤演化研究.  , 2010, 59(3): 2104-2108. doi: 10.7498/aps.59.2104
    [9] 梁立为, 李兴东, 李玉霞. 修正的F展开法和推广的KdV方程新的孤波解和精确解.  , 2009, 58(4): 2159-2163. doi: 10.7498/aps.58.2159
    [10] 何安民, 邵建立, 秦承森, 王裴. 单晶Cu冲击加载及卸载下塑性行为的微观模拟.  , 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [11] 胡建波, 周显明, 谭 华. 反向碰撞法测量Sn的高压卸载声速.  , 2008, 57(4): 2347-2351. doi: 10.7498/aps.57.2347
    [12] 俞 坚, 张金仓, 曹桂新, 王仕鹏, 敬 超, 曹世勋. 相分离Nd0.5Ca0.5MnO3体系的再入型自旋玻璃行为和电荷有序.  , 2006, 55(4): 1914-1920. doi: 10.7498/aps.55.1914
    [13] 王仕鹏, 张金仓, 曹桂新, 俞 坚, 敬 超, 曹世勋. 半掺杂Sm0.5Ca0.5MnO3体系的电荷有序和再入型自旋玻璃行为.  , 2006, 55(1): 367-371. doi: 10.7498/aps.55.367
    [14] 赵超樱, 谭维翰. 位相不匹配情形Fokker-Planck方程的解及其在准位相匹配参量放大中的应用.  , 2005, 54(6): 2723-2730. doi: 10.7498/aps.54.2723
    [15] 吴钦宽. 一类激波问题的间接匹配解.  , 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [16] 韩祥临. 一个燃烧模型的近似解.  , 2004, 53(12): 4061-4064. doi: 10.7498/aps.53.4061
    [17] 张解放. 长水波近似方程的多孤子解.  , 1998, 47(9): 1416-1420. doi: 10.7498/aps.47.1416
    [18] 夏意诚. π-π P波共振的近似解.  , 1966, 22(4): 510-514. doi: 10.7498/aps.22.510
    [19] 黄祖洽. 无限长黑圆柱情形下密恩(Milne)问题的近似解(球谐函数展开法).  , 1957, 13(4): 257-270. doi: 10.7498/aps.13.257
    [20] 张福范. 旋转矩形板之近似解.  , 1953, 9(4): 294-301. doi: 10.7498/aps.9.294
计量
  • 文章访问数:  6082
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-08
  • 修回日期:  2014-06-04
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map