-
以氧化铝纳米孔为模板,采用直流电化学沉积的方法制备了Cd0.96Zn0.04S/Cd0.97Mn0.03S/Cd0.96 Zn0.04S量子阱纳米线阵列,并系统研究了该纳米线阵列在不同温度和不同磁场下的电学输运特性. 随着外磁场的变化,样品表现出共振传输特性. 通过量子阱理论对实验现象进行了分析,直接得到了稀磁层Cd0.97Mn0.03S中s-d交换作用常数N0α的定量结果. 研究发现该交换作用常数随温度具有e-(1/T)的变化趋势.Transport properties of Cd0.96Zn0.04S/Cd0.97Mn0.03S/Cd0.96Zn0.04S multilayer nanowires, deposited in porous anodic aluminum oxide templates by DC electrochemical method, are studied. It is found that the transmission current oscillates against the applied magnetic field, even the thickness of the spin doping barrier is about 96 nm. s-d exchange constant N0 is obtained from the resonant transmission measurement. A e-(1/T) temperature dependence of N0α ndicates the electrostatic interaction nature of the s-d exchange interaction.
-
Keywords:
- Cd0.96Zn0.04S/Cd0.97Mn0.03S/Cd0.96Zn0.04S multilayer nanowires /
- resonant transmission /
- s-d exchange interaction
[1] Wang Y M, Ren J F, Yuan X B, Dou Z T, Hu G C 2012 Chin. Phys. B 21 108508
[2] Tian Y F, Hu S J, Yan S S, Mei L M 2013 Chin. Phys. B 23 088505
[3] Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019
[4] Moodera J S, Hao X, Gibson G A, Meservey R 1988 Phys. Rev. Lett. 61 637
[5] Ohno H 2000 Nature 408 944
[6] Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[7] Kossut J 2001 J. Acta Phys. Pol. A 100 111
[8] Furdya J K 1988 J. Appl. Phys. 64 29
[9] Awschalom D D, Samarth N 1999 J. Magn. Magn. Mater. 200 130
[10] Mac W, Khoi N T, Twardowski A, Gaj J A, Demianiuk M 1993 Phys. Rev. Lett. 71 2327
[11] Myers R C, Poggio M, Stern N P, Gossard A C, Awschalom D D 2005 Phys. Rev. Lett. 95 017204
[12] Yu J H, Liu X, Kweon K E 2010 Nat. Mater. 9 47
[13] Vlaskin V A, Beaulac R, Gamelin D R 2009 Nano Lett. 9 4376
[14] Wu K P, Gu S L, Zhu S M, Huang Y R, Zhou M R 2012 Acta Phys. Sin. 61 057503(in Chinese)[吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然 2012 61 057503]
[15] Fainblat R, Frohleiks J, Muckel F, Yu J H, Yang J, Hyeon T, Bacher G 2012 Nano Lett. 12 5311
[16] Lu X, Moitkowski I, Rodriguez S, Ramdas A K, Alawadhi H, Pekarek T M 2012 Phys. Rev. B 86 115213
[17] Gao Y, Sun L, Chen P, Zhang W 2011 Appl. Phys. A 103 97
[18] Egues J C 1998 Phys. Rev. Lett. 80 4578
-
[1] Wang Y M, Ren J F, Yuan X B, Dou Z T, Hu G C 2012 Chin. Phys. B 21 108508
[2] Tian Y F, Hu S J, Yan S S, Mei L M 2013 Chin. Phys. B 23 088505
[3] Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019
[4] Moodera J S, Hao X, Gibson G A, Meservey R 1988 Phys. Rev. Lett. 61 637
[5] Ohno H 2000 Nature 408 944
[6] Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[7] Kossut J 2001 J. Acta Phys. Pol. A 100 111
[8] Furdya J K 1988 J. Appl. Phys. 64 29
[9] Awschalom D D, Samarth N 1999 J. Magn. Magn. Mater. 200 130
[10] Mac W, Khoi N T, Twardowski A, Gaj J A, Demianiuk M 1993 Phys. Rev. Lett. 71 2327
[11] Myers R C, Poggio M, Stern N P, Gossard A C, Awschalom D D 2005 Phys. Rev. Lett. 95 017204
[12] Yu J H, Liu X, Kweon K E 2010 Nat. Mater. 9 47
[13] Vlaskin V A, Beaulac R, Gamelin D R 2009 Nano Lett. 9 4376
[14] Wu K P, Gu S L, Zhu S M, Huang Y R, Zhou M R 2012 Acta Phys. Sin. 61 057503(in Chinese)[吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然 2012 61 057503]
[15] Fainblat R, Frohleiks J, Muckel F, Yu J H, Yang J, Hyeon T, Bacher G 2012 Nano Lett. 12 5311
[16] Lu X, Moitkowski I, Rodriguez S, Ramdas A K, Alawadhi H, Pekarek T M 2012 Phys. Rev. B 86 115213
[17] Gao Y, Sun L, Chen P, Zhang W 2011 Appl. Phys. A 103 97
[18] Egues J C 1998 Phys. Rev. Lett. 80 4578
计量
- 文章访问数: 5035
- PDF下载量: 421
- 被引次数: 0