搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响

谢蒂旎 彭洪尚 黄世华 由芳田 王小卉

引用本文:
Citation:

水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响

谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉

Hydrothermal diffusion of Eu3+ in EuVO4@YVO4 core-shell nanoparticles and its influence on luminescent properties

Xie Di-Ni, Peng Hong-Shang, Huang Shi-Hua, You Fang-Tian, Wang Xiao-Hui
PDF
导出引用
  • 采用共沉淀法制备了EuVO4@YVO4核壳结构纳米颗粒,然后用聚电解质聚苯乙烯磺酸钠对其进行包覆和保护,并在200 ℃下对样品水热处理0–48 h. 在水热处理48 h后,样品的发光强度增强了约5倍,平均发光寿命由0.410 ms延长至0.579 ms. 对样品的发光衰减曲线的拟合、分析为Eu3+的扩散提供了有力的证据. 这种自内而外的扩散降低了样品核心中Eu3+的局域浓度,削弱了浓度猝灭效应,同时又能够避免表面猝灭效应的发生,从而使得样品的发光寿命变长、发光效率迅速提升.
    EuVO4@YVO4 core-shell nanoparticles (NPs) are synthesized, coated by poly(sodium 4-styrenesulfonate) and hydrothermally treated at 200 ℃ for 0-48 h. The photoluminescence (PL) intensity of as-prepared sample is enhanced by about 5 times after 48-hour hydrothermal treatment, and the average lifetime is raised up from 0.410 ms to 0.579 ms. Further studies of hydrothermal time-dependent PL decay curves provide evidence for the diffusion of Eu3+ in core-shell NPs, which could reduce the concentration quenching in particle core and hence enhance the PL efficiency. This thermal diffusion strategy based on ion-doped core-shell NPs could be used to prepare luminescent NPs with high efficiency if designed elaborately.
    • 基金项目: 国家自然科学基金(批准号:61078069,10979009)、教育部新世纪优秀人才支持计划(批准号:12-0177)和中央高校基本科研业务费专项资金(批准号:2010JBZ006,2013YJS090)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 61078069, 10979009), Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. 12-0771), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2010JBZ006, 2013YJS090).
    [1]

    Alivisatos A P 1996 Science 271 933

    [2]

    Vollath D 2013 Nanomaterials: An Introduction to Synthesis, Properties and Applications (Weinheim: Wiley-VCH)

    [3]

    Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z 2010 J. Fluoresce. 20 321

    [4]

    Chen X Y, Liu Y S, Tu D T 2014 Lanthanide-Doped Luminescent Nanomaterials (Berlin: Springer)

    [5]

    Thanh N T K, Green L A W 2010 Nano Today 5 213

    [6]

    Tian L J, Sun Y J, Yu Y, Kong X G, Zhang H 2008 Chem. Phys. Lett. 452 188

    [7]

    Gao C C, Huang S H, You F T, Kang K, Feng Y 2008 Chin. Phys. Lett. 25 698

    [8]

    Huang S H, You F T 2009 J. Lumin. 129 1692

    [9]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [10]

    Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J 2008 J. Phys. Chem. C 112 2904

    [11]

    Ghosh P, Kar A, Patra A 2010 J. Appl. Phys. 108 113506

    [12]

    Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y L 2013 Theranostics 3 282

    [13]

    Jiang D X, Cao L X, Su G, Liu W, Qu H, Sun Y G, Dong B H 2009 Mater. Chem. Phys. 115 795

    [14]

    Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y 2012 Chem. Mater. 25 106

    [15]

    DiMaio J, Kokuoz B, James T, Harkey T, Monofsky D, Ballato J 2008 Opt. Express 16 11769

    [16]

    Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jig P T, Liu X Y, Li H B, Zhao J L, Masumoto Y 2010 J. Phys. Chem. C 114 15331

    [17]

    Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP 2002 Chem. Mater. 14 2264

    [18]

    Yu J G, Li C, Liu S W 2008 J. Colloid Interf. Sci. 326 433

    [19]

    Li Y H, Hong G Y 2005 J. Solid State Chem. 178 645

    [20]

    Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P 2003 J. Phys. Chem. B 107 6754

    [21]

    Blasse G 1967 J. Chem. Phys. 46 2583

    [22]

    Blasse G, Kiliaan H, Vries A 1988 J. Lumin. 40 639

    [23]

    Yu C L, Dai S X, Zhou G, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 3894 (in Chinese) [于春雷, 戴世勋, 周刚, 张军杰, 胡丽丽, 姜中宏 2005 54 3894]

    [24]

    Han L, Song F, Zou C G, Su J, Yan L H, Tian J G, Zhang G Y 2007 Acta Phys. Sin. 56 4187 (in Chinese) [韩琳, 宋峰, 邹昌光, 苏静, 闫立华, 田建国, 张光寅 2007 56 4187]

    [25]

    Tang S, Huang M L, Wang J L, Yu F D, Shang G L, Wu J H 2012 J. Alloys Compd. 513 474

    [26]

    Murakami S, Herren M, Rau D, Morita M 2000 Inorg. Chim. Acta 300 1014

    [27]

    Fujii T, Kodaira K, Kawauchi O 1997 J. Phys. Chem. B 101 10631

  • [1]

    Alivisatos A P 1996 Science 271 933

    [2]

    Vollath D 2013 Nanomaterials: An Introduction to Synthesis, Properties and Applications (Weinheim: Wiley-VCH)

    [3]

    Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z 2010 J. Fluoresce. 20 321

    [4]

    Chen X Y, Liu Y S, Tu D T 2014 Lanthanide-Doped Luminescent Nanomaterials (Berlin: Springer)

    [5]

    Thanh N T K, Green L A W 2010 Nano Today 5 213

    [6]

    Tian L J, Sun Y J, Yu Y, Kong X G, Zhang H 2008 Chem. Phys. Lett. 452 188

    [7]

    Gao C C, Huang S H, You F T, Kang K, Feng Y 2008 Chin. Phys. Lett. 25 698

    [8]

    Huang S H, You F T 2009 J. Lumin. 129 1692

    [9]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [10]

    Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J 2008 J. Phys. Chem. C 112 2904

    [11]

    Ghosh P, Kar A, Patra A 2010 J. Appl. Phys. 108 113506

    [12]

    Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y L 2013 Theranostics 3 282

    [13]

    Jiang D X, Cao L X, Su G, Liu W, Qu H, Sun Y G, Dong B H 2009 Mater. Chem. Phys. 115 795

    [14]

    Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y 2012 Chem. Mater. 25 106

    [15]

    DiMaio J, Kokuoz B, James T, Harkey T, Monofsky D, Ballato J 2008 Opt. Express 16 11769

    [16]

    Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jig P T, Liu X Y, Li H B, Zhao J L, Masumoto Y 2010 J. Phys. Chem. C 114 15331

    [17]

    Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP 2002 Chem. Mater. 14 2264

    [18]

    Yu J G, Li C, Liu S W 2008 J. Colloid Interf. Sci. 326 433

    [19]

    Li Y H, Hong G Y 2005 J. Solid State Chem. 178 645

    [20]

    Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P 2003 J. Phys. Chem. B 107 6754

    [21]

    Blasse G 1967 J. Chem. Phys. 46 2583

    [22]

    Blasse G, Kiliaan H, Vries A 1988 J. Lumin. 40 639

    [23]

    Yu C L, Dai S X, Zhou G, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 3894 (in Chinese) [于春雷, 戴世勋, 周刚, 张军杰, 胡丽丽, 姜中宏 2005 54 3894]

    [24]

    Han L, Song F, Zou C G, Su J, Yan L H, Tian J G, Zhang G Y 2007 Acta Phys. Sin. 56 4187 (in Chinese) [韩琳, 宋峰, 邹昌光, 苏静, 闫立华, 田建国, 张光寅 2007 56 4187]

    [25]

    Tang S, Huang M L, Wang J L, Yu F D, Shang G L, Wu J H 2012 J. Alloys Compd. 513 474

    [26]

    Murakami S, Herren M, Rau D, Morita M 2000 Inorg. Chim. Acta 300 1014

    [27]

    Fujii T, Kodaira K, Kawauchi O 1997 J. Phys. Chem. B 101 10631

  • [1] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理.  , 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射.  , 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] 孟令知, 苑立波. 离散波导热扩散耦合机理及其应用.  , 2023, 72(24): 246601. doi: 10.7498/aps.72.20230204
    [4] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性.  , 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [5] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射.  , 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [6] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为.  , 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [7] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数.  , 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [8] 马文君, 由芳田, 彭洪尚, 黄世华. 小粒径同质/异质壳层结构NaGdF4:3%Nd3+纳米颗粒的近红外发光特性.  , 2017, 66(10): 107801. doi: 10.7498/aps.66.107801
    [9] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应.  , 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [10] 钟红梅, 刘茜, 周遥, 庄建东, 周虎. AlON:Ce3+荧光粉的制备及光谱研究.  , 2013, 62(8): 087804. doi: 10.7498/aps.62.087804
    [11] 刘红利, 郝玉英, 许并社. 白光发光二级管用红色荧光粉LiSrBO3: Eu3+的制备与发光性能研究.  , 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [12] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制.  , 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [13] 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究.  , 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [14] 延凤平, 王琳, 魏淮, 傅永军, 简伟, 郑凯, 毛向桥, 李坚, 刘利松, 彭健, 简水生. 石英基掺Yb3+光纤中Al3+共掺特性的研究.  , 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [15] 周亚训, 戴世勋, 周灵, 徐铁峰, 聂秋华, 黄尚廉. 掺铒碲酸盐玻璃中的协作上转换能量转移.  , 2009, 58(2): 1261-1268. doi: 10.7498/aps.58.1261
    [16] 韩 琳, 宋 峰, 邹昌光, 苏 静, 闫立华, 田建国, 张光寅. Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究.  , 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [17] 王晓丹, 赵志伟, 徐晓东, 宋平新, 姜本学, 徐 军, 邓佩珍. 不同Yb掺杂量的Yb:Y3Al5O12晶体的光谱分析.  , 2006, 55(8): 4358-4364. doi: 10.7498/aps.55.4358
    [18] 于春雷, 戴世勋, 周 刚, 张军杰, 胡丽丽, 姜中宏. 掺铒碲酸盐玻璃中的浓度猝灭机理研究.  , 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [19] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究.  , 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [20] 胡孝勇, 伊藤晴雄, 生田信皓. 利用Townsend放电测定N2(A3∑u+)亚稳态分子的扩散系数和猝灭速率常数.  , 1989, 38(12): 2039-2043. doi: 10.7498/aps.38.2039
计量
  • 文章访问数:  7831
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-01
  • 修回日期:  2014-03-31
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map