-
采用共沉淀法制备了EuVO4@YVO4核壳结构纳米颗粒,然后用聚电解质聚苯乙烯磺酸钠对其进行包覆和保护,并在200 ℃下对样品水热处理0–48 h. 在水热处理48 h后,样品的发光强度增强了约5倍,平均发光寿命由0.410 ms延长至0.579 ms. 对样品的发光衰减曲线的拟合、分析为Eu3+的扩散提供了有力的证据. 这种自内而外的扩散降低了样品核心中Eu3+的局域浓度,削弱了浓度猝灭效应,同时又能够避免表面猝灭效应的发生,从而使得样品的发光寿命变长、发光效率迅速提升.
-
关键词:
- EuVO4@YVO4 /
- 核壳结构纳米颗粒 /
- 热扩散 /
- 浓度猝灭
EuVO4@YVO4 core-shell nanoparticles (NPs) are synthesized, coated by poly(sodium 4-styrenesulfonate) and hydrothermally treated at 200 ℃ for 0-48 h. The photoluminescence (PL) intensity of as-prepared sample is enhanced by about 5 times after 48-hour hydrothermal treatment, and the average lifetime is raised up from 0.410 ms to 0.579 ms. Further studies of hydrothermal time-dependent PL decay curves provide evidence for the diffusion of Eu3+ in core-shell NPs, which could reduce the concentration quenching in particle core and hence enhance the PL efficiency. This thermal diffusion strategy based on ion-doped core-shell NPs could be used to prepare luminescent NPs with high efficiency if designed elaborately.-
Keywords:
- EuVO4@YVO4 /
- core-shell nanoparticles /
- thermal diffusion /
- concentration quenching
[1] Alivisatos A P 1996 Science 271 933
[2] Vollath D 2013 Nanomaterials: An Introduction to Synthesis, Properties and Applications (Weinheim: Wiley-VCH)
[3] Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z 2010 J. Fluoresce. 20 321
[4] Chen X Y, Liu Y S, Tu D T 2014 Lanthanide-Doped Luminescent Nanomaterials (Berlin: Springer)
[5] Thanh N T K, Green L A W 2010 Nano Today 5 213
[6] Tian L J, Sun Y J, Yu Y, Kong X G, Zhang H 2008 Chem. Phys. Lett. 452 188
[7] Gao C C, Huang S H, You F T, Kang K, Feng Y 2008 Chin. Phys. Lett. 25 698
[8] Huang S H, You F T 2009 J. Lumin. 129 1692
[9] Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515
[10] Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J 2008 J. Phys. Chem. C 112 2904
[11] Ghosh P, Kar A, Patra A 2010 J. Appl. Phys. 108 113506
[12] Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y L 2013 Theranostics 3 282
[13] Jiang D X, Cao L X, Su G, Liu W, Qu H, Sun Y G, Dong B H 2009 Mater. Chem. Phys. 115 795
[14] Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y 2012 Chem. Mater. 25 106
[15] DiMaio J, Kokuoz B, James T, Harkey T, Monofsky D, Ballato J 2008 Opt. Express 16 11769
[16] Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jig P T, Liu X Y, Li H B, Zhao J L, Masumoto Y 2010 J. Phys. Chem. C 114 15331
[17] Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP 2002 Chem. Mater. 14 2264
[18] Yu J G, Li C, Liu S W 2008 J. Colloid Interf. Sci. 326 433
[19] Li Y H, Hong G Y 2005 J. Solid State Chem. 178 645
[20] Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P 2003 J. Phys. Chem. B 107 6754
[21] Blasse G 1967 J. Chem. Phys. 46 2583
[22] Blasse G, Kiliaan H, Vries A 1988 J. Lumin. 40 639
[23] Yu C L, Dai S X, Zhou G, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 3894 (in Chinese) [于春雷, 戴世勋, 周刚, 张军杰, 胡丽丽, 姜中宏 2005 54 3894]
[24] Han L, Song F, Zou C G, Su J, Yan L H, Tian J G, Zhang G Y 2007 Acta Phys. Sin. 56 4187 (in Chinese) [韩琳, 宋峰, 邹昌光, 苏静, 闫立华, 田建国, 张光寅 2007 56 4187]
[25] Tang S, Huang M L, Wang J L, Yu F D, Shang G L, Wu J H 2012 J. Alloys Compd. 513 474
[26] Murakami S, Herren M, Rau D, Morita M 2000 Inorg. Chim. Acta 300 1014
[27] Fujii T, Kodaira K, Kawauchi O 1997 J. Phys. Chem. B 101 10631
-
[1] Alivisatos A P 1996 Science 271 933
[2] Vollath D 2013 Nanomaterials: An Introduction to Synthesis, Properties and Applications (Weinheim: Wiley-VCH)
[3] Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z 2010 J. Fluoresce. 20 321
[4] Chen X Y, Liu Y S, Tu D T 2014 Lanthanide-Doped Luminescent Nanomaterials (Berlin: Springer)
[5] Thanh N T K, Green L A W 2010 Nano Today 5 213
[6] Tian L J, Sun Y J, Yu Y, Kong X G, Zhang H 2008 Chem. Phys. Lett. 452 188
[7] Gao C C, Huang S H, You F T, Kang K, Feng Y 2008 Chin. Phys. Lett. 25 698
[8] Huang S H, You F T 2009 J. Lumin. 129 1692
[9] Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515
[10] Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J 2008 J. Phys. Chem. C 112 2904
[11] Ghosh P, Kar A, Patra A 2010 J. Appl. Phys. 108 113506
[12] Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y L 2013 Theranostics 3 282
[13] Jiang D X, Cao L X, Su G, Liu W, Qu H, Sun Y G, Dong B H 2009 Mater. Chem. Phys. 115 795
[14] Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y 2012 Chem. Mater. 25 106
[15] DiMaio J, Kokuoz B, James T, Harkey T, Monofsky D, Ballato J 2008 Opt. Express 16 11769
[16] Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jig P T, Liu X Y, Li H B, Zhao J L, Masumoto Y 2010 J. Phys. Chem. C 114 15331
[17] Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP 2002 Chem. Mater. 14 2264
[18] Yu J G, Li C, Liu S W 2008 J. Colloid Interf. Sci. 326 433
[19] Li Y H, Hong G Y 2005 J. Solid State Chem. 178 645
[20] Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P 2003 J. Phys. Chem. B 107 6754
[21] Blasse G 1967 J. Chem. Phys. 46 2583
[22] Blasse G, Kiliaan H, Vries A 1988 J. Lumin. 40 639
[23] Yu C L, Dai S X, Zhou G, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 3894 (in Chinese) [于春雷, 戴世勋, 周刚, 张军杰, 胡丽丽, 姜中宏 2005 54 3894]
[24] Han L, Song F, Zou C G, Su J, Yan L H, Tian J G, Zhang G Y 2007 Acta Phys. Sin. 56 4187 (in Chinese) [韩琳, 宋峰, 邹昌光, 苏静, 闫立华, 田建国, 张光寅 2007 56 4187]
[25] Tang S, Huang M L, Wang J L, Yu F D, Shang G L, Wu J H 2012 J. Alloys Compd. 513 474
[26] Murakami S, Herren M, Rau D, Morita M 2000 Inorg. Chim. Acta 300 1014
[27] Fujii T, Kodaira K, Kawauchi O 1997 J. Phys. Chem. B 101 10631
计量
- 文章访问数: 7831
- PDF下载量: 805
- 被引次数: 0