搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

nc-Si:H/α-SiC:H多层膜的结构与光吸收特性

马蕾 蒋冰 陈乙豪 沈波 彭英才

引用本文:
Citation:

nc-Si:H/α-SiC:H多层膜的结构与光吸收特性

马蕾, 蒋冰, 陈乙豪, 沈波, 彭英才

Structure and optical absorption of nc-Si:H/α-SiC:H multilayers

Ma Lei, Jiang Bing, Chen Yi-Hao, Shen Bo, Peng Ying-Cai
PDF
导出引用
  • 利用等离子体增强化学气相沉积工艺制备了α-Si:H/α-SiC:H多层膜结构,并在900–1000℃下进行了高温退火处理,获得了尺寸可控的nc-Si:H/α-SiC:H多层膜样品. Raman测量表明,900℃以上的退火温度可以使α-Si:H层发生限制晶化. 透射电子显微镜照片显示出α-Si:H层中形成的Si纳米晶粒的纵向尺寸被α-SiC:H层所限制,而与α-Si:H层的厚度相当,晶粒的择优取向是晶向. 傅里叶变换红外吸收谱则清楚地显示出,高温退火导致多层膜中的H原子大量逸出,以及α-SiC:H层中有更多的Si-C 形成. 对nc-Si:H/α-SiC:H多层膜吸收系数的测量证明,多层膜的吸收主要由nc-Si:H层支配,随着Si 晶粒尺寸减小,多层膜的光学带隙增大,吸收系数降低. 而当nc-Si:H层厚度不变时,α-SiC:H层厚度变化则不会引起多层膜吸收系数以及光学带隙的改变.
    Nanocrystalline silicon nc-Si:H/SiC:H multilayers were fabricated by thermal annealing of the hydrogenated amorphous Si α-Si:H/hydrogenated amorphous silicon carbide α-SiC:H stacked structures prepared by plasma enhanced chemical vapor deposition (PECVD) system at 900–1000℃. The microstructures of annealed samples were investigated by Raman scattering, cross-section transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Results demonstrate that the size of Si grains formed can be controlled by the α-Si:H layer thickness and annealing temperature. Optical absorption measurements show that the optical bandgap of the multilayered structures increases and the absorption coefficient decreases with diminishing Si grain size. However, the absorption coefficient and the optical bandgap of the multilayers are not influenced by the α-SiC:H layer thickness when the size of Si grains is kept constant.
    • 基金项目: 国家自然科学基金(批准号:61306098)、河北省自然科学基金(批准号:E2012201088,F2013201196)、河北省高等学校科学技术研究项目(批准号:2011237,ZH2012019)和北京大学介观物理国家重点实验室开放性课题资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61306098), the Natural Science Foundation of Hebei Province, China (Grant Nos. E2012201088, F2013201196), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. 2011237, ZH2012019), and the State Key Laboratoy for Artificial Microstructure and Mesoscopic Physics, Pecking University, Beijing, China.
    [1]

    Green M A 2003 Third Generation Photovoltaics: Advnced Solar Energy Conversion (Springer) pp1-4

    [2]

    Cho E C, Green M A, Conibeer G, Song D, Cho Y H, Scardera G, Huang S, Park S, Hao X J, Huang Y, Van Dao L 2007 Adv. Optoelectron. 2007 1

    [3]

    Conibeer G, Green M, Cho E C, Konig D, Cho Y H, Fangsuwannarak T, Scardera G, Pink E, Huang Y, Puzzer T, Huang S, Song D, Flynn C, Park S, Hao X, Mansfield D 2008 Thin Solid Films 516 6748

    [4]

    Chen K, Huang X, Xu J, Feng D 1992 Appl. Phys. Lett. 61 2069

    [5]

    Kuo K Y, Huang P R, Lee P T 2013 Nanotechnology 24 195701

    [6]

    Kunle M, Janz S, Nickel K G, Heidt A, Luysberg M, Eibl O 2013 Sol. Energy Mater. Sol. Cells 5 11

    [7]

    Chaudhuri P, Kole A, Haider G 2013 J. Appl. Phys. 113 064313

    [8]

    Jiang C W, Green M A 2006 J. Appl. Phys. 99 114902

    [9]

    Tao Y L, Zuo Y H, Zheng J, Xue C L, Cheng B W, Wang Q M, Xu J 2012 Chin. Phys. B 21 077402

    [10]

    Ma Z Y, Guo S H, Chen D Y, Wei D Y, Yao Y, Zhou J, Huang R, Li W, Xu J, Xu L, Huang X F, Chen K J, Feng D 2008 Chin. Phys. B 17 303

    [11]

    Perez-Wurfl I, Ma L, Lin D, Hao X, Green M A, Conibeer G 2012 Sol. Energy Mater. Sol. Cells 100 65

    [12]

    Cao Y Q, Xu X, Li S X, Li W, Xu J, Chen K 2013 Front. Optoelectron. 6 228

    [13]

    Lu Z H, Lockwood D J, Banbeau J M 1995 Nature 378 258

    [14]

    Zhang L, Chen K, Huang X, Wang L, Xu J, Li W 2003 Appl. Phys. A 77 485

    [15]

    Liu Y S, Chen K, Qiao F, Huang X F, Han P G, Qian B, Ma Z Y, Li W, Xu J, Chen K J 2006 Acta Phys. Sin. 55 5403 (in Chinese)[刘艳松, 陈铠, 乔峰, 黄信凡, 韩培高, 钱波, 马忠元, 李伟, 徐骏, 陈坤基 2006 55 5403]

    [16]

    Ma X F, Wang Y Z, Zhou C Y 2011 Acta Phys. Sin. 60 068102 (in Chinese) [马小凤, 王懿喆, 周呈悦 2011 60 068102]

    [17]

    López-Vidrier J, Hernández S, Samà J, Canino M, Allegrezza M, Bellettato M, Shukla R, Schnabel M, Lóper P, López-Conesa L, Estradé S, Peiró F, Janz S, Garrido B 2013 Mater. Sci. Eng. B 178 639

    [18]

    Wang Q, Ding J N, He Y L, Xue W, Fan Z 2007 Acta Phys. Sin. 56 4834 (in Chinese)[王权, 丁建宁, 何宇亮, 薛伟, 范真 2007 56 4834]

    [19]

    Song D, Cho E-C, Conibeer G, Huang Y, Flynn C, Green M A 2008 J. Appl. Phys. 103 083544

    [20]

    Rui Y, Li S, Cao Y, Xu J, Li W, Chen K 2013 Appl. Surf. Sci. 269 37

    [21]

    Nychyporuk T, Lemiti M 2011 Solar Cells-Silicon Wafer-Based Technologies (Rijeka: Intech) pp 139-176

    [22]

    Conibeer G, Green M, Corkish R, Cho Y 2006 Thin Solid Films 511-512 654

    [23]

    Rui Y, Li S, Xu J, Song C, Jiang X 2011 J. Appl. Phys. 110 064322

    [24]

    Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M 2007 Jpn. J. Appl. Phys. 46 L833

  • [1]

    Green M A 2003 Third Generation Photovoltaics: Advnced Solar Energy Conversion (Springer) pp1-4

    [2]

    Cho E C, Green M A, Conibeer G, Song D, Cho Y H, Scardera G, Huang S, Park S, Hao X J, Huang Y, Van Dao L 2007 Adv. Optoelectron. 2007 1

    [3]

    Conibeer G, Green M, Cho E C, Konig D, Cho Y H, Fangsuwannarak T, Scardera G, Pink E, Huang Y, Puzzer T, Huang S, Song D, Flynn C, Park S, Hao X, Mansfield D 2008 Thin Solid Films 516 6748

    [4]

    Chen K, Huang X, Xu J, Feng D 1992 Appl. Phys. Lett. 61 2069

    [5]

    Kuo K Y, Huang P R, Lee P T 2013 Nanotechnology 24 195701

    [6]

    Kunle M, Janz S, Nickel K G, Heidt A, Luysberg M, Eibl O 2013 Sol. Energy Mater. Sol. Cells 5 11

    [7]

    Chaudhuri P, Kole A, Haider G 2013 J. Appl. Phys. 113 064313

    [8]

    Jiang C W, Green M A 2006 J. Appl. Phys. 99 114902

    [9]

    Tao Y L, Zuo Y H, Zheng J, Xue C L, Cheng B W, Wang Q M, Xu J 2012 Chin. Phys. B 21 077402

    [10]

    Ma Z Y, Guo S H, Chen D Y, Wei D Y, Yao Y, Zhou J, Huang R, Li W, Xu J, Xu L, Huang X F, Chen K J, Feng D 2008 Chin. Phys. B 17 303

    [11]

    Perez-Wurfl I, Ma L, Lin D, Hao X, Green M A, Conibeer G 2012 Sol. Energy Mater. Sol. Cells 100 65

    [12]

    Cao Y Q, Xu X, Li S X, Li W, Xu J, Chen K 2013 Front. Optoelectron. 6 228

    [13]

    Lu Z H, Lockwood D J, Banbeau J M 1995 Nature 378 258

    [14]

    Zhang L, Chen K, Huang X, Wang L, Xu J, Li W 2003 Appl. Phys. A 77 485

    [15]

    Liu Y S, Chen K, Qiao F, Huang X F, Han P G, Qian B, Ma Z Y, Li W, Xu J, Chen K J 2006 Acta Phys. Sin. 55 5403 (in Chinese)[刘艳松, 陈铠, 乔峰, 黄信凡, 韩培高, 钱波, 马忠元, 李伟, 徐骏, 陈坤基 2006 55 5403]

    [16]

    Ma X F, Wang Y Z, Zhou C Y 2011 Acta Phys. Sin. 60 068102 (in Chinese) [马小凤, 王懿喆, 周呈悦 2011 60 068102]

    [17]

    López-Vidrier J, Hernández S, Samà J, Canino M, Allegrezza M, Bellettato M, Shukla R, Schnabel M, Lóper P, López-Conesa L, Estradé S, Peiró F, Janz S, Garrido B 2013 Mater. Sci. Eng. B 178 639

    [18]

    Wang Q, Ding J N, He Y L, Xue W, Fan Z 2007 Acta Phys. Sin. 56 4834 (in Chinese)[王权, 丁建宁, 何宇亮, 薛伟, 范真 2007 56 4834]

    [19]

    Song D, Cho E-C, Conibeer G, Huang Y, Flynn C, Green M A 2008 J. Appl. Phys. 103 083544

    [20]

    Rui Y, Li S, Cao Y, Xu J, Li W, Chen K 2013 Appl. Surf. Sci. 269 37

    [21]

    Nychyporuk T, Lemiti M 2011 Solar Cells-Silicon Wafer-Based Technologies (Rijeka: Intech) pp 139-176

    [22]

    Conibeer G, Green M, Corkish R, Cho Y 2006 Thin Solid Films 511-512 654

    [23]

    Rui Y, Li S, Xu J, Song C, Jiang X 2011 J. Appl. Phys. 110 064322

    [24]

    Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M 2007 Jpn. J. Appl. Phys. 46 L833

  • [1] 易有根, 王瑜英, 胡奇峰, 张彦彬, 彭勇宜, 雷红文, 彭丽萍, 王雪敏, 吴卫东. ZnCdO/ZnO单量子阱结构及其荧光发射特性.  , 2016, 65(5): 057802. doi: 10.7498/aps.65.057802
    [2] 李玉阁, 李冠群, 李戈扬. 调制结构对c-VC/h-TiB2纳米多层膜的超硬效应的影响.  , 2013, 62(1): 016801. doi: 10.7498/aps.62.016801
    [3] 马小凤, 王懿喆, 周呈悦. a-Si ∶H/SiO2多量子阱材料制备及其光学性能和微结构研究.  , 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [4] 刘静, 郑卫民, 宋迎新, 初宁宁, 李素梅, 丛伟艳. 量子限制受主远红外电致发光器件的制备与测量.  , 2010, 59(4): 2728-2733. doi: 10.7498/aps.59.2728
    [5] 乌晓燕, 孔明, 李戈扬, 赵文济. Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应.  , 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [6] 戴明, 廖远宝, 刘东, 甘新慧, 徐岭, 马忠元, 徐骏, 陈坤基. CdTe纳米晶及层状纳米晶薄膜的生长及其光荧光性质.  , 2009, 58(10): 7246-7249. doi: 10.7498/aps.58.7246
    [7] 宋迎新, 郑卫民, 刘静, 初宁宁, 李素梅. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响.  , 2009, 58(9): 6471-6476. doi: 10.7498/aps.58.6471
    [8] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜.  , 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [9] 肖万能, 赵 霁, 王维江, 李润华, 周建英. 周期多层量子阱结构的光吸收特性与电场分布.  , 2003, 52(9): 2293-2297. doi: 10.7498/aps.52.2293
    [10] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析.  , 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [11] 刘翠红, 陈传誉, 马本堃. 极化子效应对量子盘中线性和非线性光吸收系数的影响.  , 2002, 51(9): 2022-2028. doi: 10.7498/aps.51.2022
    [12] 康俊勇, S.TSUNEKAWA, A.KASUYA. 超细SnO2纳米晶粒带边光吸收的线度效应.  , 2001, 50(11): 2198-2202. doi: 10.7498/aps.50.2198
    [13] 徐至中. 势垒区δ掺杂量子阱Ge0.3Si0.7/Si/Ge0.3Si0.7的子带间跃迁光吸收系数.  , 1996, 45(10): 1762-1770. doi: 10.7498/aps.45.1762
    [14] 王志超, 滕敏康, 刘吟春. 用正电子湮没技术研究a-Si:H/a-SiNx:H多层膜中的界面缺陷.  , 1991, 40(12): 1973-1979. doi: 10.7498/aps.40.1973
    [15] 黄旭光, 汪河洲, 佘卫龙, 李庆行, 余振新, 金波, 彭少麒. a-Si:H/a-SiNx:H多层膜的皮秒时间分辨光致发光.  , 1991, 40(10): 1677-1682. doi: 10.7498/aps.40.1677
    [16] 彭少麒;苏子敏;刘景希. a-Si:H结的横向光生伏特效应.  , 1989, 38(8): 1235-1244. doi: 10.7498/aps.38.1235
    [17] 高x值混晶Hg1-xCdxTe光吸收边的压力效应.  , 1989, 38(11): 1858-1863. doi: 10.7498/aps.38.1858
    [18] 王树林, 程如光. a-Si:H/a-SiNx:H超晶格的掺杂效应.  , 1988, 37(7): 1119-1123. doi: 10.7498/aps.37.1119
    [19] 单伟, 沈学础, 赵敏光, 朱浩荣. 半磁半导体Cd1-xMnxTe光吸收边的压力效应.  , 1986, 35(10): 1290-1298. doi: 10.7498/aps.35.1290
    [20] 崔树范, 麦振洪, 储晞. 固态硅中Si—H红外吸收谱的频移.  , 1985, 34(8): 1096-1101. doi: 10.7498/aps.34.1096
计量
  • 文章访问数:  6682
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-25
  • 修回日期:  2014-03-16
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map