搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性神经网络中噪声改善信息传输

李欢 王友国

引用本文:
Citation:

一类非线性神经网络中噪声改善信息传输

李欢, 王友国

Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system

Li Huan, Wang You-Guo
PDF
导出引用
  • 以互信息为测度,通过数值计算和计算机仿真比较详细地讨论了在加性和乘性噪声共同作用下的一类非线性神经网络中噪声改善信息传输的(阈上)随机共振现象. 在一定的系统阈值和固定的乘性(或加性)噪声强度下,互信息随着加性(或乘性)噪声强度的增加显示出上凸变化,(阈上)随机共振出现;系统阈值单元数目的增加可增强信息传输的效果;系统阈值的增加使得信号处在阈下的成分增多,(阈上)随机共振现象更容易发生. 另外,改变加性噪声强度比改变乘性强度时(阈上)随机共振更容易发生. 以上结果说明(阈上)随机共振现象的存在性和噪声改善信息传输的效果与乘性或加性噪声强度、阈值单元数以及系统阈值水平密切相关.
    In this paper, (supra-threshold) stochastic resonance phenomenon of noise-enhanced information transmission is studied in detail through the numerical calculation and the computer simulation in a non-linear multilevel threshold neural networks system, which is affected by both additive noise and multiplicative noise, then the mutual information is used to characterize the phenomenon. The mutual information as a function of additive noise intensity or multiplicative noise intensity brings on convex changes under a suitable system threshold and a fixed multiplicative noise intensity or additive noise intensity, which shows that the (supra-threshold) stochastic resonance phenomenon occurs. The increases in the number of the system threshold units can enhance the effectiveness of information transmission; the increase of the system threshold can increase the signal components that are under the threshold, and thus the supra-threshold stochastic resonance takes place more easily. In addition, by changing the additive noise intensity the supra-threshold stochastic resonance occurs more easily than by changing the multiplicative noise intensity. The above results show that both the existence of the supra-threshold stochastic resonance and the effectiveness of noise-improved the signal transmission are closely related to multiplicative or additive noise intensity, the number of threshold units, and the system threshold level.
    • 基金项目: 国家自然科学基金(批准号:61179027)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61179027).
    [1]

    Benzi R, Stuera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [2]
    [3]

    McNamara B, Wiesenfeld K 1998 Phys. Rev. A 39 4854

    [4]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [5]
    [6]

    Mitaim S, Kosko B 1998 Proc. IEEE 86 2152

    [7]
    [8]
    [9]

    Chen H, Varshney P K, Kay S, Michels J H 2007 IEEE Trans. Sign. Process. 55 3172

    [10]

    Chapeau-Blondeau F, Godivier X 1997 Phys. Rev. E 55 1478

    [11]
    [12]

    Fauve S, Heslot F 1983 Phys. Lett. A 97 5

    [13]
    [14]

    McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626

    [15]
    [16]

    Zhou T, Moss F, Jung P 1990 Phys. Rev. A 42 3161

    [17]
    [18]
    [19]

    Chialvo D R, Longtin A, Muller-Gerking J 1997 Phys. Rev. E 55 1798

    [20]
    [21]

    Kay S 2000 IEEE Sign. Process. Lett. 7 8

    [22]

    Wang Y G, Wu L N 2007 Fluct. Noise Lett. 7 L449

    [23]
    [24]
    [25]

    Wang Y G, Wu L N 2005 Fluct. Noise Lett. 5 L435

    [26]

    Kosko B, Mitaim S 2003 Neural Networks 16 755

    [27]
    [28]
    [29]

    Bulsara A R, Zador A 1996 Phys. Rev. E 54 R2185

    [30]

    Guo F, Zhou Y R, Zhang Y 2010 Chin. Phys. B 19 070504

    [31]
    [32]

    Collins J J, Chow C C, Capela A C, Imhoff T T 1995 Phys. Rev. E 52 3321

    [33]
    [34]

    Stocks N G 2000 Phys. Rev. Lett. 84 2310

    [35]
    [36]

    Nikitin A, Stocks N G, Morse R P 2007 Phys. Rev. E 75 021121

    [37]
    [38]

    Cao J, Wang Z, Sun Y 2007 Physica A 385 718

    [39]
    [40]

    Cao J, Daniel W C Ho, Huang X 2007 Nonlin. Anal. 66 1558

    [41]
    [42]

    Stocks N G 2001 Phys. Rev. E 63 041114

    [43]
    [44]

    Stocks N G, Mannella R 2001 Phys. Rev. E 64 030902

    [45]
    [46]
    [47]

    Mcdonnell M D, Stocks N G, Pearce C E M, Abbott D 2005 Fluct. Noise Lett. 5 L457

    [48]

    McDonnell M D, Abbott D, Pearce C E M 2002 Microelectr. J. 33 1079

    [49]
    [50]
    [51]

    Stocks N G, Allingham D, Morse R P 2002 Fluct. Noise Lett. 2 L169

    [52]

    Rousseau D, Duan F, Chapeau-Blondeau F 2003 Phys. Rev. E 68 031107

    [53]
    [54]
    [55]

    Rousseau D, Chapeau-Blondeau F 2004 Phys. Lett. A 321 280

    [56]
    [57]

    Stocks N G 2001 Phys. Lett. A 279 308

    [58]
    [59]

    Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1994 Phys. Rev. E 49 4878

    [60]

    Barzykin A V, Seki K 1997 Europhys. Lett. 40 117

    [61]
    [62]

    Barzykin A V, Seki K, Shibata F 1998 Phys. Rev. E 57 6555

    [63]
    [64]
    [65]

    Zhang J J, Jin Y F 2012 Acta Phys. Sin. 61 130502 (in Chinese) [张静静, 靳艳飞 2012 61 130502]

    [66]

    Guo Y F, Tan J G 2012 Acta Phys. Sin. 61 170502 (in Chinese) [郭永峰, 谭建国 2012 61 170502]

    [67]
  • [1]

    Benzi R, Stuera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [2]
    [3]

    McNamara B, Wiesenfeld K 1998 Phys. Rev. A 39 4854

    [4]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [5]
    [6]

    Mitaim S, Kosko B 1998 Proc. IEEE 86 2152

    [7]
    [8]
    [9]

    Chen H, Varshney P K, Kay S, Michels J H 2007 IEEE Trans. Sign. Process. 55 3172

    [10]

    Chapeau-Blondeau F, Godivier X 1997 Phys. Rev. E 55 1478

    [11]
    [12]

    Fauve S, Heslot F 1983 Phys. Lett. A 97 5

    [13]
    [14]

    McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626

    [15]
    [16]

    Zhou T, Moss F, Jung P 1990 Phys. Rev. A 42 3161

    [17]
    [18]
    [19]

    Chialvo D R, Longtin A, Muller-Gerking J 1997 Phys. Rev. E 55 1798

    [20]
    [21]

    Kay S 2000 IEEE Sign. Process. Lett. 7 8

    [22]

    Wang Y G, Wu L N 2007 Fluct. Noise Lett. 7 L449

    [23]
    [24]
    [25]

    Wang Y G, Wu L N 2005 Fluct. Noise Lett. 5 L435

    [26]

    Kosko B, Mitaim S 2003 Neural Networks 16 755

    [27]
    [28]
    [29]

    Bulsara A R, Zador A 1996 Phys. Rev. E 54 R2185

    [30]

    Guo F, Zhou Y R, Zhang Y 2010 Chin. Phys. B 19 070504

    [31]
    [32]

    Collins J J, Chow C C, Capela A C, Imhoff T T 1995 Phys. Rev. E 52 3321

    [33]
    [34]

    Stocks N G 2000 Phys. Rev. Lett. 84 2310

    [35]
    [36]

    Nikitin A, Stocks N G, Morse R P 2007 Phys. Rev. E 75 021121

    [37]
    [38]

    Cao J, Wang Z, Sun Y 2007 Physica A 385 718

    [39]
    [40]

    Cao J, Daniel W C Ho, Huang X 2007 Nonlin. Anal. 66 1558

    [41]
    [42]

    Stocks N G 2001 Phys. Rev. E 63 041114

    [43]
    [44]

    Stocks N G, Mannella R 2001 Phys. Rev. E 64 030902

    [45]
    [46]
    [47]

    Mcdonnell M D, Stocks N G, Pearce C E M, Abbott D 2005 Fluct. Noise Lett. 5 L457

    [48]

    McDonnell M D, Abbott D, Pearce C E M 2002 Microelectr. J. 33 1079

    [49]
    [50]
    [51]

    Stocks N G, Allingham D, Morse R P 2002 Fluct. Noise Lett. 2 L169

    [52]

    Rousseau D, Duan F, Chapeau-Blondeau F 2003 Phys. Rev. E 68 031107

    [53]
    [54]
    [55]

    Rousseau D, Chapeau-Blondeau F 2004 Phys. Lett. A 321 280

    [56]
    [57]

    Stocks N G 2001 Phys. Lett. A 279 308

    [58]
    [59]

    Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1994 Phys. Rev. E 49 4878

    [60]

    Barzykin A V, Seki K 1997 Europhys. Lett. 40 117

    [61]
    [62]

    Barzykin A V, Seki K, Shibata F 1998 Phys. Rev. E 57 6555

    [63]
    [64]
    [65]

    Zhang J J, Jin Y F 2012 Acta Phys. Sin. 61 130502 (in Chinese) [张静静, 靳艳飞 2012 61 130502]

    [66]

    Guo Y F, Tan J G 2012 Acta Phys. Sin. 61 170502 (in Chinese) [郭永峰, 谭建国 2012 61 170502]

    [67]
  • [1] 方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国. 基于物理信息神经网络的金属表面吸收率测量方法.  , 2024, 73(9): 094301. doi: 10.7498/aps.73.20231453
    [2] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [3] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信.  , 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [4] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析.  , 2013, 62(11): 118704. doi: 10.7498/aps.62.118704
    [5] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性.  , 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [6] 王荣, 吴莹, 刘少宝. 随机中毒对神经元网络时空动力学行为的影响.  , 2013, 62(22): 220504. doi: 10.7498/aps.62.220504
    [7] 郭永峰, 谭建国. 一类非线性神经网络系统的超阈值随机共振现象.  , 2012, 61(17): 170502. doi: 10.7498/aps.61.170502
    [8] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响.  , 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [9] 王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林. SrTiO3基片上Tl-2212双晶约瑟夫森结的动态特性及噪声影响研究.  , 2009, 58(10): 7216-7221. doi: 10.7498/aps.58.7216
    [10] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响.  , 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [11] 王宝华, 陆启韶, 吕淑娟. 阈下激励与噪声联合作用下肝细胞系统的内钙时空随机共振问题.  , 2009, 58(11): 7458-7465. doi: 10.7498/aps.58.7458
    [12] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [13] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割.  , 2007, 56(8): 4353-4360. doi: 10.7498/aps.56.4353
    [14] 张佃中. 非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究.  , 2007, 56(6): 3152-3157. doi: 10.7498/aps.56.3152
    [15] 肖海林, 聂在平. 一种研究二元对称离散信道平均互信息的新方法.  , 2007, 56(4): 1948-1951. doi: 10.7498/aps.56.1948
    [16] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象.  , 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [17] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [18] 祝恒江, 李 蓉, 温孝东. 利用随机共振在强噪声下提取信息信号.  , 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用.  , 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  5926
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-11
  • 修回日期:  2014-02-28
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map