-
基于第一性原理的理论计算,研究了不同氟化程度的BC3,BC5,BC7 的稳定结构和电子特征,发现通过B原子替代C原子,F原子与平面结构的结合能力更强了,氟化的硼碳结构比氢化的硼碳结构更加稳定. 研究发现:当只有C原子与F原子成键时,体系变成半导体,而当B原子与F 原子成键时,即所有原子都与F 原子成键,体系变成导体. 通过不同程度的氟化,BC3发生半 导体-金属的转变,BC5和BC7 发生金属-半导体-金属的转变. 理论分析表明,B原子的pz 轨道对电学性质变化有较大影响. 由于其丰富的电学特性,此类氟化硼碳平面在纳米电子器件领域中具有潜在应用,并且该结果对实验合成也有一定的指导意义.Based on the first principles, we investigate the structures and electronic properties of fluorinated BC3, BC5, and BC7. Through the fluorination of BC structure, boron-carbon sheets are more stable than the hydrogenation. The results show that the system becomes semiconductor only on condition that the boron atoms can be bonded with the carbon atoms, whereas, the whole system will become the conductor when all atoms participate in the bonding. With the variation of fluorination degrees, semiconductor-metal transitions appear in the BC3 compounds and metal-semiconductor-metal transitions appear in the BC5 and BC7 sheet. Theoretical analyses find that pz orbital of boron atoms plays an important role in the electronic transition. Because of the rich electronic properties, this kind of fluorinated boron-carbon compound will become potential nanoelectronic materials and our results can play a role in guiding experiments.
-
Keywords:
- first principles /
- boron-carbon compounds /
- electronic properties
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, De Heer W A 2006 Science 312 1191
[3] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]
[4] Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 62 063601]
[5] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[6] Castro Neto A H, Guinea F 2009 Rev. Mod. Phys. 91 109
[7] Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107
[8] Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C Z, Jiang Y 2012 Rare Metals 31 112
[9] Pan Z J, Zhang L T, Wu J S 2005 Acta Phys. Sin. 54 5308 (in Chinese) [潘志军, 张澜庭, 吴建生 2005 54 5308]
[10] Chen Z J, Xiao H Y, Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) [陈中钧, 肖海燕, 祖小涛 2005 54 5301]
[11] Yin D, Liu F Q, Fan X J 2005 Chin. Phys. B 14 2287
[12] Wei H Y, Xiong X L, Song H T, Luo S Z 2010 Chin. Phys. Lett. 27 097102
[13] Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 093601
[14] Feng H J, Liu F M 2008 Chin. Phys. Lett. 25 671
[15] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
[16] Sahin H, Ataca C, Ciraci S 2010 Phys. Rev. B 81 205417
[17] Topsakal M, Cahangirov S, Ciraci S 2010 Appl. Phys. Lett. 96 091912
[18] Boukhvalov D W 2010 Physica E 43 199
[19] Cheng S H, Zou K, Okino F, Gutierrez H R, Gupta A, Shen N, Eklund P C, Sofo J O, Zhu J 2010 Phys. Rev. B 81 205435
[20] Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432
[21] Charlier J C, Gonze X, Michenaud J P 1993 Phys. Rev. B 47 16162
[22] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001
[23] Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877
[24] Panchakarla L S, Govindaraj A, Rao C N R 2007 ACS Nano 1 494
[25] Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R 2009 J. Phys. Chem. C 113 4257
[26] Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]
[27] Pontes R B, Fazzio A, Dalpian G M 2009 Phys. Rev. B 79 033412
[28] Magri R 1994 Phys. Rev. B 49 2805
[29] Xi C, Jun N 2013 Phys. Rev. B 88 115430
[30] Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 62 137301]
[31] Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Li C R, Tang W H 2011 Nanoscale Res. Lett. 6 190
[32] Ding Y, Ni J 2009 J. Phys. Chem. C 113 18468
[33] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[34] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[35] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[36] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[37] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[38] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[39] Miyamoto Y, Rubio A, Louie S G, Cohen M L 1994 Phys. Rev. B 50 18360
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, De Heer W A 2006 Science 312 1191
[3] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]
[4] Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 62 063601]
[5] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[6] Castro Neto A H, Guinea F 2009 Rev. Mod. Phys. 91 109
[7] Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107
[8] Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C Z, Jiang Y 2012 Rare Metals 31 112
[9] Pan Z J, Zhang L T, Wu J S 2005 Acta Phys. Sin. 54 5308 (in Chinese) [潘志军, 张澜庭, 吴建生 2005 54 5308]
[10] Chen Z J, Xiao H Y, Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) [陈中钧, 肖海燕, 祖小涛 2005 54 5301]
[11] Yin D, Liu F Q, Fan X J 2005 Chin. Phys. B 14 2287
[12] Wei H Y, Xiong X L, Song H T, Luo S Z 2010 Chin. Phys. Lett. 27 097102
[13] Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 093601
[14] Feng H J, Liu F M 2008 Chin. Phys. Lett. 25 671
[15] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
[16] Sahin H, Ataca C, Ciraci S 2010 Phys. Rev. B 81 205417
[17] Topsakal M, Cahangirov S, Ciraci S 2010 Appl. Phys. Lett. 96 091912
[18] Boukhvalov D W 2010 Physica E 43 199
[19] Cheng S H, Zou K, Okino F, Gutierrez H R, Gupta A, Shen N, Eklund P C, Sofo J O, Zhu J 2010 Phys. Rev. B 81 205435
[20] Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432
[21] Charlier J C, Gonze X, Michenaud J P 1993 Phys. Rev. B 47 16162
[22] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001
[23] Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877
[24] Panchakarla L S, Govindaraj A, Rao C N R 2007 ACS Nano 1 494
[25] Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R 2009 J. Phys. Chem. C 113 4257
[26] Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]
[27] Pontes R B, Fazzio A, Dalpian G M 2009 Phys. Rev. B 79 033412
[28] Magri R 1994 Phys. Rev. B 49 2805
[29] Xi C, Jun N 2013 Phys. Rev. B 88 115430
[30] Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 62 137301]
[31] Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Li C R, Tang W H 2011 Nanoscale Res. Lett. 6 190
[32] Ding Y, Ni J 2009 J. Phys. Chem. C 113 18468
[33] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[34] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[35] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[36] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[37] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[38] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[39] Miyamoto Y, Rubio A, Louie S G, Cohen M L 1994 Phys. Rev. B 50 18360
计量
- 文章访问数: 5976
- PDF下载量: 574
- 被引次数: 0