搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗晶和纳米晶Sm3Co合金的制备及其性能研究

刘雪梅 刘国权 李定朋 王海滨 宋晓艳

引用本文:
Citation:

粗晶和纳米晶Sm3Co合金的制备及其性能研究

刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳

Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys

Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan
PDF
导出引用
  • 本文针对Sm3Co粗晶和纳米晶合金材料的制备和基础性能进行了研究. 采用磁悬浮熔炼技术多次精炼制备出Sm3Co粗晶合金. 以此为母材,利用高能球磨非晶化和放电等离子烧结致密化并同步晶化的技术路线,制备出平均晶粒尺寸为8 nm的超细纳米晶Sm3Co合金块体材料. 构建了Sm3Co纳米晶合金的晶体结构模型,并结合其显微组织的表征,分析了Sm3Co纳米晶合金的磁性能和力学性能,并与粗晶合金进行了比较. 粗晶Sm3Co合金不具有硬磁特性,而同种成分的纳米晶合金则表现出一定的硬磁特性. 纳米晶Sm3Co合金的显微硬度和弹性模量分别达到4.87 GPa和63.7 GPa,比粗晶合金增大约8.7%和13.3%. 本文研究结果为Sm-Co体系合金的基础性能及其纳米尺度效应提供了系统的参考依据.
    In this paper, a novel fabrication process of the nanocrystalline Sm3Co alloys and their fundamental properties were studied. The polycrystalline Sm3Co bulk material was prepared by the vacuum melting method. By using the polycrystalline Sm3Co bulk metal, the nanocrystalline Sm3Co alloys with an average grain size of about 8 nm was prepared by combined ball milling and spark plasma sintering. The crystal structure model was constructed and the magnetic and mechanical properties of the polycrystalline and nanocrystalline Sm3Co alloys were characterized and compared with each other in detail. Results show that the nanocrystalline alloys exhibit magnetic properties and high mechanical properties. Microhardness and elastic modulus of the nanocrystalline Sm3Co alloys are 4.87 GPa and 63.7 GPa, respectively, which are increased by 8.7% and 13.3% as compared with the polycrystalline alloys.
    • 基金项目: 新金属材料国家重点实验室开放基金(批准号:2012-Z08)和北京市自然科学基金(批准号:2133062,2112006)资助的课题.
    • Funds: Project supported by the State Key Lab of Advanced Metals and Materials, University of Science and Technology Beijing, China (Grant No. 2012-Z08), and the Natural Science Foundation of Beijing, China (Grant Nos. 2133062, 2112006).
    [1]

    Masrour R, Bahmad L, Benyoussef A 2013 Chin. Phys. B 22 057504

    [2]

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese)[王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]

    [3]

    Gutfleisch O, Mller K-H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L 2006 Acta Mater. 54 997

    [4]

    Yi J H, Peng Y D 2004 Rare Metal Mater. Eng. 33 337 (in Chinese) [易健宏, 彭元东 2004 稀有金属材料与工程 33 337]

    [5]

    Zhang Z X, Song X Y, Xu W W, Li D P, Liu X M 2011 J. Appl. Phys. 110 124318

    [6]

    Lu N D, Song X Y, Zhang J X 2010 Nanotech. 21 115708

    [7]

    Lu N D, Song X Y, Seyring M, Zhang J X 2009 J. Nanosci. Nanotech. 9 5141

    [8]

    Zhang Y, Song X Y, Xu W W, Zhang Z X 2012 Acta Phys. Sin. 61 016102 (in Chinese)[张扬, 宋晓艳, 徐文武, 张哲旭 2012 61 016102]

    [9]

    Song X Y, Lu N D, Seyring M, Xu W W, Zhang Z X, Zhang J X 2009 Appl. Phys. Lett. 94 023102

    [10]

    Xu W W, Song X Y, LI E D, Wei J, Zhang J X 2009 J. Appl. Phys. 105 104310

    [11]

    Xu W W, Song X Y, Lu N D, Huang C 2009 Acta Mater. 58 396

    [12]

    Xu W W, Song X Y, Lu N D, Seyring M, Rettenmayr M 2009 Nanoscale 1 238

    [13]

    Zhang Z X, Song X Y, Xu W W 2010 Acta Mater. 59 1808

    [14]

    Yuan Y, Delsante S, Borzone G 2010 J. Alloys Comp. 508 309

    [15]

    Carriker R C, Ludewig G H 1972 Appl. Phys. Lett. 20 250

    [16]

    Li D P, Song X Y, Zhang Z X, Lu N D, Qiao Y K, Liu X M 2012 Acta Metall. Sin. 48 1248 (in Chinese)[李定朋, 宋晓艳, 张哲旭, 卢年端, 乔印凯, 刘雪梅 2012 金属学报 48 1248]

    [17]

    Buschow K H J, Goot A S V 1969 J. Less-Common Met. 18 309

    [18]

    Zhang Z X, Song X Y, Xu W W, Seyring M, Rettenmayr M 2011 Scripta Mater. 62 594

    [19]

    Wang L L, Sun D C, Yang Q M 2005 Acta Phys. Sin. 54 5730 (in Chinese)[王玲玲, 孙德成, 杨全民 2005 54 5730]

    [20]

    Xu W W, Song X Y, Li E D, Wei J, Li L M 2009 Acta Phys. Sin. 58 3280 (in Chinese)[徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅 2009 58 3280]

    [21]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4585

    [22]

    Liu Y, Dong Y S, Yue J L, Li G Y 2006 Acta Phys. Sin. 55 6019 (in Chinese)[刘艳, 董云杉, 岳建岭, 李戈扬 2006 55 6019]

  • [1]

    Masrour R, Bahmad L, Benyoussef A 2013 Chin. Phys. B 22 057504

    [2]

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese)[王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]

    [3]

    Gutfleisch O, Mller K-H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L 2006 Acta Mater. 54 997

    [4]

    Yi J H, Peng Y D 2004 Rare Metal Mater. Eng. 33 337 (in Chinese) [易健宏, 彭元东 2004 稀有金属材料与工程 33 337]

    [5]

    Zhang Z X, Song X Y, Xu W W, Li D P, Liu X M 2011 J. Appl. Phys. 110 124318

    [6]

    Lu N D, Song X Y, Zhang J X 2010 Nanotech. 21 115708

    [7]

    Lu N D, Song X Y, Seyring M, Zhang J X 2009 J. Nanosci. Nanotech. 9 5141

    [8]

    Zhang Y, Song X Y, Xu W W, Zhang Z X 2012 Acta Phys. Sin. 61 016102 (in Chinese)[张扬, 宋晓艳, 徐文武, 张哲旭 2012 61 016102]

    [9]

    Song X Y, Lu N D, Seyring M, Xu W W, Zhang Z X, Zhang J X 2009 Appl. Phys. Lett. 94 023102

    [10]

    Xu W W, Song X Y, LI E D, Wei J, Zhang J X 2009 J. Appl. Phys. 105 104310

    [11]

    Xu W W, Song X Y, Lu N D, Huang C 2009 Acta Mater. 58 396

    [12]

    Xu W W, Song X Y, Lu N D, Seyring M, Rettenmayr M 2009 Nanoscale 1 238

    [13]

    Zhang Z X, Song X Y, Xu W W 2010 Acta Mater. 59 1808

    [14]

    Yuan Y, Delsante S, Borzone G 2010 J. Alloys Comp. 508 309

    [15]

    Carriker R C, Ludewig G H 1972 Appl. Phys. Lett. 20 250

    [16]

    Li D P, Song X Y, Zhang Z X, Lu N D, Qiao Y K, Liu X M 2012 Acta Metall. Sin. 48 1248 (in Chinese)[李定朋, 宋晓艳, 张哲旭, 卢年端, 乔印凯, 刘雪梅 2012 金属学报 48 1248]

    [17]

    Buschow K H J, Goot A S V 1969 J. Less-Common Met. 18 309

    [18]

    Zhang Z X, Song X Y, Xu W W, Seyring M, Rettenmayr M 2011 Scripta Mater. 62 594

    [19]

    Wang L L, Sun D C, Yang Q M 2005 Acta Phys. Sin. 54 5730 (in Chinese)[王玲玲, 孙德成, 杨全民 2005 54 5730]

    [20]

    Xu W W, Song X Y, Li E D, Wei J, Li L M 2009 Acta Phys. Sin. 58 3280 (in Chinese)[徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅 2009 58 3280]

    [21]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4585

    [22]

    Liu Y, Dong Y S, Yue J L, Li G Y 2006 Acta Phys. Sin. 55 6019 (in Chinese)[刘艳, 董云杉, 岳建岭, 李戈扬 2006 55 6019]

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析.  , 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响.  , 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究.  , 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [6] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响.  , 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [7] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能.  , 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [8] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟.  , 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [10] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究.  , 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [11] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构.  , 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [12] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究.  , 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [13] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性.  , 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [14] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响.  , 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [15] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能.  , 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [16] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响.  , 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能.  , 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响.  , 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响.  , 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
计量
  • 文章访问数:  6060
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-29
  • 修回日期:  2014-01-14
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map