-
通过自洽求解薛定谔方程和泊松方程,较系统地研究了GaN沟道层、AlGaN背势垒层、Si掺杂和AlN 插入层对N极性GaN/AlGaN异质结中二维电子气(2DEG)的影响. 分析表明,GaN沟道层厚度、AlGaN背势垒层厚度及Al 组分变大都能一定程度上提高二维电子气面密度,AlGaN背势垒层的厚度和Al 组分变大也可提高二维电子气限阈性,且不同的Si掺杂形式对二维电子气的影响也有差异,而AlN插入层在提高器件二维电子气面密度、限阈性等方面表现都较为突出. 在模拟中GaN沟道层厚度小于5 nm 时无法形成二维电子气,超过20 nm后二维电子气面密度趋于饱和,而AlGaN背势垒厚度超过40 nm后二维电子气也有饱和趋势. 对均匀掺杂和delta 掺杂而言AlGaN 背势垒层Si掺杂浓度超过5×1019 cm-3后2DEG面密度开始饱和.而厚度为2 nm AlN 插入层的引入会使2DEG面密度从无AlN插入层时的0.93×1013 cm-2提高到1.17×1013 cm-2.
-
关键词:
- N极性 /
- GaN/AlGaN异质结 /
- 二维电子气 /
- 限阈性
By the self-consistent solution of the Schrödinger and poisson equations, the effects of GaN channel layer, AlGaN back barrier layer with and without Si doping and AlN interlayer on two-dimensional electron gas in N-polar GaN/AlGaN heterostructure are systematically studied. The results indicate that the increases of the thickness values of GaN channel layer and AlGaN back barrier layer and Al content value can improve the density of 2DEG to a certain degree, and the influences of different Si doping forms on 2DEG sheet density are not the same, also the confinement of 2DEG could be strengthened by increasing Al content value and thickness value of the AlGaN barrier layer. The AlN interlayer is a comparatively outstanding one in improving the performance of the 2DEG such as the 2DEG sheet density and confinement. When GaN channel layer thickness is less than 5 nm, there is no 2DEG in the simulation, when it exceeds 20 nm the 2DEG sheet density tends to be saturated. 2DEG has a tendency to be saturated when the thickness value of AlGaN back barrier is more than 40 nm. 2DEG sheet densities with uniform doping and delta doping in AlGaN back barrier are saturated when the doping concentration is more than 5×1019 cm-3. The 2DEG sheet density could be increased from 0.93×1013 cm-2 without AlN interlayer to 1.17×1013 cm-2 with 2 nm AlN interlayer.-
Keywords:
- N-polar /
- GaN/AlGaN heterostructure /
- two-dimensional electron gas /
- confinement
[1] Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Ng W T 2013 Chin. Phys. B 22 026103
[2] Kong X, Wei K, Liu G G, Liu X Y 2012 Chin. Phys. B 21 128501
[3] Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756 (in Chinese) [孔月婵, 郑有炓, 储荣明, 顾书林 2003 52 1756]
[4] Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320 (in Chinese) [孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 53 2320]
[5] Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409 (in Chinese) [张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 58 3409]
[6] Ambacher O, Smart J, Shealy J R, Weimann N G 1999 J. Appl. Phys. 85 3222
[7] Denninghoff D, Lu J, Laurent M, Ahmadi E 2012 Proceedings of the 70th Device Research Conference University Park, TX, USA, June 18-20, 2012 p151
[8] Nidhi, Dasgupta S, Lu J, Speck J S, Mishra U K 2012 Elec. Dev. Lett. 33 961
[9] Kolluri S, Keller S, Brown D, Gupta G 2010 J. Appl. Phys. 108 119902
[10] Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese) [张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 62 150202]
[11] Rajan S, Chini A, Wong M H, Speck J S, Mishra U K 2007 J. Appl. Phys. 102 044501
[12] Li T, Wang H B, Liu J P, Niu N H, Zhang N G, Xing Y H, Han J, Liu Y, Gao G, Shen G D 2007 Acta Phys. Sin. 56 1036 (in Chinese) [李彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩军, 刘莹, 高国, 沈光地 2007 56 1036]
-
[1] Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Ng W T 2013 Chin. Phys. B 22 026103
[2] Kong X, Wei K, Liu G G, Liu X Y 2012 Chin. Phys. B 21 128501
[3] Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756 (in Chinese) [孔月婵, 郑有炓, 储荣明, 顾书林 2003 52 1756]
[4] Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320 (in Chinese) [孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 53 2320]
[5] Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409 (in Chinese) [张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 58 3409]
[6] Ambacher O, Smart J, Shealy J R, Weimann N G 1999 J. Appl. Phys. 85 3222
[7] Denninghoff D, Lu J, Laurent M, Ahmadi E 2012 Proceedings of the 70th Device Research Conference University Park, TX, USA, June 18-20, 2012 p151
[8] Nidhi, Dasgupta S, Lu J, Speck J S, Mishra U K 2012 Elec. Dev. Lett. 33 961
[9] Kolluri S, Keller S, Brown D, Gupta G 2010 J. Appl. Phys. 108 119902
[10] Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese) [张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 62 150202]
[11] Rajan S, Chini A, Wong M H, Speck J S, Mishra U K 2007 J. Appl. Phys. 102 044501
[12] Li T, Wang H B, Liu J P, Niu N H, Zhang N G, Xing Y H, Han J, Liu Y, Gao G, Shen G D 2007 Acta Phys. Sin. 56 1036 (in Chinese) [李彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩军, 刘莹, 高国, 沈光地 2007 56 1036]
计量
- 文章访问数: 8901
- PDF下载量: 914
- 被引次数: 0