搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速84Kr15+, 17+离子轰击GaAs单晶

杨变 杨治虎 徐秋梅 郭义盼 武晔虹 宋张勇 蔡晓红

引用本文:
Citation:

低速84Kr15+, 17+离子轰击GaAs单晶

杨变, 杨治虎, 徐秋梅, 郭义盼, 武晔虹, 宋张勇, 蔡晓红

Slow ions 84Kr15+, 17+ bombardment on GaAs

Yang Bian, Yang Zhi-Hu, Xu Qiu-Mei, Guo Yi-Pan, Wu Ye-Hong, Song Zhang-Yong, Cai Xiao-Hong
PDF
导出引用
  • 用345 keV的Kr15+和340 keV的Kr17+离子以45角入射n型GaAs单晶(100)面,测量了表面形貌的变化和发射的375500 nm GaⅠ和Kr Ⅱ的特征光谱线. Krq+(q=15,17)离子轰击后表面形貌的变化主要取决于入射离子的电荷态q. 离子沉积到靶表面的能量引起Ga原子激发,其辐射光谱为GaⅠ 403.2 nm和GaⅠ 417.0 nm. 入射离子中性化过程中俘获GaAs导带电子形成高激发态原子,通过级联退激填充3p,4d等空穴,P壳层电子跃迁发射谱线为Kr Ⅱ 410.0 nm,Kr Ⅱ 430.4 nm,Kr Ⅱ 434.0 nm和Kr Ⅱ 486.0 nm,Kr Ⅱ 486.0 nm为较强谱线. 实验结果表明,入射离子与GaAs单晶相互作用发射的可见光产额与入射离子的电荷态密切相关,较高电荷态Kr17+离子入射产生的光辐射产额大约为Kr15+离子的两倍.
    We have investigated surface morphology and visible light emission from slow ions Kr15+, 17+ colliding with GaAs (100). The surface disorder of GaAs films mainly depends on the charge state of incident ions. The two spectral lines of target atom Ga belong to transitions of GaⅠ 4p 2P1/2o5s 2S1/2 at 403.2 nm and 4p 2P3/2o5s 2S1/2 at 417.0 nm. Light emissions of target species depend on the energy of the incident ions deposited on the target surface atoms. During the neutralization process, the four spectral lines of Kr+ respectively can be attributed to the transitions of Kr Ⅱ 4d 4F7/25p 2D5/2o at 410.0 nm, 5s 2P3/25p 4S3/2o at 430.4 nm, 5p 4D3/2o4d 2D3/2 at 434.0 nm and Kr Ⅱ 4d 4D1/25p 2S1/2o at 486.0 nm. They are induced by cascade de-excitation after many electrons of the conductions band of the solid surface captured in highly excited states of the incident ion. Intensities of these six spectral lines from incident ions Kr17+ are obviously larger than Kr15+'s.
    • 基金项目: 国家自然科学基金(批准号:11174296)和国家重点基础研究发展973计划(批准号:2010CB832901)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174296), and the National Basic Research Program of China (Grant No. 2010CB832901).
    [1]

    Memon A, Fakhro S Q 1987 Int. J. IR Millim Waves 8 1391

    [2]

    Wang G H 1988 Physics of particle interaction with solids (Beijing: Scientific Press) (in Chinese) [王广厚 1988 粒子同固体相互作用物理学(北京:科学出版社)]

    [3]

    Look D C 1987 J. Electrochem Soc. 134 2527

    [4]

    Williams J S 1998 Mater. Sci. Eng. 253 8

    [5]

    Pearton S J, Poate J M, Sette F, Gibson J M, Jacobson D C, Williams J S 1987 Nucl. Instrum. Meth. B 19 369

    [6]

    Pearton S J 1991 Solid State Phenomena 1-2 247

    [7]

    Sharma B L 1989 Def. Sci. J. 39 353

    [8]

    Winter H, Auth C, Schuch R, Beebe E 1993 Phys. Rev. Lett. 71 1939

    [9]

    Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 L507

    [10]

    Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674

    [11]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Progress in Surface Science 61 23

    [12]

    Burgdorfer J, Reinhold C, Hagg L Meyer F 1996 Aust. J. Phys. 49 527

    [13]

    Briand J P, Giardino G, Borsoni G, Le Roux V, Bechu N, Dreuil S, Tuske O, Machicoane G 2000 Review of Scientific Instruments 71 627

    [14]

    Grether M, Niemann D, Spieler A, Stolterfoht N 1997 Phys. Rev. A 56 3794

    [15]

    Thomaschewski J, BleckNeuhaus J, Grether M, Spieler A, Stolterfoht N 1998 Phys. Rev. A 57 3665

    [16]

    Zhang X A, Xiao G Q, Wang W S, Mao R S 2002 Nucl. Phys. Rev. 19 342 (in Chinese) [张小安, 肖国青, 王武生, 毛瑞士 2002 原子核物理评论 19 342]

    [17]

    Lee C S, Chang Y C, Ji T Y 1997 Nucl. Instrum. Meth. B 132 391

    [18]

    Qayyum A, Akhtar M N, Riffat T 2005 Radiat Phys. Chem. 72 663

    [19]

    Rajasekar P, Scott D, Materer N F 2006 Nucl. Instrum. Meth. B 245 411

    [20]

    Cazalilla M A, Lorente N, Diez Muino R, Gauyacq J P, Teillet-Billy D, Echenique P M 1998 Phys. Rev. B 58 13991

    [21]

    Yang Z H, Xu Q M, Guo Y P, Wu Y H, Song Z Y 2013 Chin. Phys. Lett. 30 013201

    [22]

    Yang Z R, Zhang X A, Xu Q M, Yang Z H 2013 Acta Phys. Sin. 62 043401 (in Chinese) [杨兆锐, 张小安, 徐秋梅, 杨治虎 2013 62 043401]

    [23]

    Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhou K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 803 (in Chinese) [杨治虎, 宋张勇, 崔莹, 张红强, 阮芳芳, 邵健雄, 杜鹃, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红 2008 57 803]

    [24]

    Bethe H A, Salpeter E E 1977 Quantum Mechanics of One- and Two-electron Atoms (New York Plenum Publishing Corporation)

    [25]

    Zhang L Q, Zhang C H, Yang Y T, Yao C F, Sun Y M, Li B S, Zhao Z M, Song S J 2009 Acta Phys. Sin. 58 5578 (in Chinese) [张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建 2009 58 5578]

    [26]

    Kucheyev S O, Williams J S, Jagadish C, Li G, Pearton S J 2000 Appl. Phys. Lett. 76 3899

    [27]

    Yang Y T, Zhang C H, Sun Y M, Yao C F, Zhao Z M 2007 Nucl. Technol. 30 318 (in Chinese) [杨义涛, 张崇宏, 孙友梅, 姚存峰, 赵志明 2007 核技术 30 318]

    [28]

    Zhang L Q, Zhang C H, Yang Y T, Yao C F, Li B S, Sun Y M, Song S J 2009 Chin. Phys. Lett. 26 036101

    [29]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2012 NIST Atomic Spectra Database (ver. 5.0) [Online] (Available: http: //physics.nist.gov/asd; Gaithersburg: National Institute of Standards and Technology)

    [30]

    Machicoane G A, Schenkel T, Niedermayr T R, Newmann M W, Hamza A V, Barnes A V, McDonald J M, Tanis J A, Schneider D H 2002 Phys. Rev. A 65 042903

    [31]

    Sigmund P 1969 Phys. Rev. 184 383

    [32]

    Lee C S, Chang Y C, Chang Y H 1999 Nucl. Instrum. Meth. B 149 294

  • [1]

    Memon A, Fakhro S Q 1987 Int. J. IR Millim Waves 8 1391

    [2]

    Wang G H 1988 Physics of particle interaction with solids (Beijing: Scientific Press) (in Chinese) [王广厚 1988 粒子同固体相互作用物理学(北京:科学出版社)]

    [3]

    Look D C 1987 J. Electrochem Soc. 134 2527

    [4]

    Williams J S 1998 Mater. Sci. Eng. 253 8

    [5]

    Pearton S J, Poate J M, Sette F, Gibson J M, Jacobson D C, Williams J S 1987 Nucl. Instrum. Meth. B 19 369

    [6]

    Pearton S J 1991 Solid State Phenomena 1-2 247

    [7]

    Sharma B L 1989 Def. Sci. J. 39 353

    [8]

    Winter H, Auth C, Schuch R, Beebe E 1993 Phys. Rev. Lett. 71 1939

    [9]

    Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 L507

    [10]

    Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674

    [11]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Progress in Surface Science 61 23

    [12]

    Burgdorfer J, Reinhold C, Hagg L Meyer F 1996 Aust. J. Phys. 49 527

    [13]

    Briand J P, Giardino G, Borsoni G, Le Roux V, Bechu N, Dreuil S, Tuske O, Machicoane G 2000 Review of Scientific Instruments 71 627

    [14]

    Grether M, Niemann D, Spieler A, Stolterfoht N 1997 Phys. Rev. A 56 3794

    [15]

    Thomaschewski J, BleckNeuhaus J, Grether M, Spieler A, Stolterfoht N 1998 Phys. Rev. A 57 3665

    [16]

    Zhang X A, Xiao G Q, Wang W S, Mao R S 2002 Nucl. Phys. Rev. 19 342 (in Chinese) [张小安, 肖国青, 王武生, 毛瑞士 2002 原子核物理评论 19 342]

    [17]

    Lee C S, Chang Y C, Ji T Y 1997 Nucl. Instrum. Meth. B 132 391

    [18]

    Qayyum A, Akhtar M N, Riffat T 2005 Radiat Phys. Chem. 72 663

    [19]

    Rajasekar P, Scott D, Materer N F 2006 Nucl. Instrum. Meth. B 245 411

    [20]

    Cazalilla M A, Lorente N, Diez Muino R, Gauyacq J P, Teillet-Billy D, Echenique P M 1998 Phys. Rev. B 58 13991

    [21]

    Yang Z H, Xu Q M, Guo Y P, Wu Y H, Song Z Y 2013 Chin. Phys. Lett. 30 013201

    [22]

    Yang Z R, Zhang X A, Xu Q M, Yang Z H 2013 Acta Phys. Sin. 62 043401 (in Chinese) [杨兆锐, 张小安, 徐秋梅, 杨治虎 2013 62 043401]

    [23]

    Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhou K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 803 (in Chinese) [杨治虎, 宋张勇, 崔莹, 张红强, 阮芳芳, 邵健雄, 杜鹃, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红 2008 57 803]

    [24]

    Bethe H A, Salpeter E E 1977 Quantum Mechanics of One- and Two-electron Atoms (New York Plenum Publishing Corporation)

    [25]

    Zhang L Q, Zhang C H, Yang Y T, Yao C F, Sun Y M, Li B S, Zhao Z M, Song S J 2009 Acta Phys. Sin. 58 5578 (in Chinese) [张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建 2009 58 5578]

    [26]

    Kucheyev S O, Williams J S, Jagadish C, Li G, Pearton S J 2000 Appl. Phys. Lett. 76 3899

    [27]

    Yang Y T, Zhang C H, Sun Y M, Yao C F, Zhao Z M 2007 Nucl. Technol. 30 318 (in Chinese) [杨义涛, 张崇宏, 孙友梅, 姚存峰, 赵志明 2007 核技术 30 318]

    [28]

    Zhang L Q, Zhang C H, Yang Y T, Yao C F, Li B S, Sun Y M, Song S J 2009 Chin. Phys. Lett. 26 036101

    [29]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2012 NIST Atomic Spectra Database (ver. 5.0) [Online] (Available: http: //physics.nist.gov/asd; Gaithersburg: National Institute of Standards and Technology)

    [30]

    Machicoane G A, Schenkel T, Niedermayr T R, Newmann M W, Hamza A V, Barnes A V, McDonald J M, Tanis J A, Schneider D H 2002 Phys. Rev. A 65 042903

    [31]

    Sigmund P 1969 Phys. Rev. 184 383

    [32]

    Lee C S, Chang Y C, Chang Y H 1999 Nucl. Instrum. Meth. B 149 294

  • [1] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响.  , 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [2] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像.  , 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [3] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响.  , 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [4] 常鑫鑫, 沈礼, 武晓瑞, 戴长建. Eu原子4f76snlRydberg态的研究.  , 2017, 66(9): 093201. doi: 10.7498/aps.66.093201
    [5] 韩波, 王菲鹿, 梁贵云, 赵刚. 实验室光致电离等离子体中激发过程的研究.  , 2016, 65(11): 110503. doi: 10.7498/aps.65.110503
    [6] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应.  , 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [7] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响.  , 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [8] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟.  , 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [9] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术.  , 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [10] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究.  , 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [11] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响.  , 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [12] 王友发, 吴周礼, 李文润, 王帅, 童红双, 阮永丰. 掺铈YVO4 晶体的发光特性及铈离子的价态分析.  , 2012, 61(22): 228105. doi: 10.7498/aps.61.228105
    [13] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究.  , 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [14] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性.  , 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [15] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱.  , 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [16] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [17] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管.  , 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析.  , 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量.  , 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [20] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线.  , 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
计量
  • 文章访问数:  6766
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-18
  • 修回日期:  2013-11-20
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map