-
基于密度泛理论的第一性原理以及VASP软件,研究了电荷俘获存储器(CTM)中俘获层HfO2在不同缺陷下(3价氧空位(VO3)、4价氧空位(VO4)、铪空位(VHf)以及间隙掺杂氧原子(IO))对写速度的影响. 对比计算了HfO2在不同缺陷下对电荷的俘获能、能带偏移值以及电荷俘获密度. 计算结果表明:VO3,VO4与VHf为单性俘获,IO则是双性俘获,HfO2在VHf时俘获能最大,最有利于俘获电荷;VHf时能带偏移最小,电荷隧穿进入俘获层最容易,即隧穿时间最短;同时对电荷俘获密度进行对比,表明VHf对电荷的俘获密度最大,即电荷被俘获的概率最大. 通过对CTM 的写操作分析以及计算结果可知,CTM俘获层m-HfO2在VHf时的写速度比其他缺陷时的写速度快. 本文的研究将为提高CTM操作速度提供理论指导.The programming speed of charge trapping memories (CTM) with different defects were studied based on the first principle and VASP package. The defects include threefold oxygen vacancy (VO3), fourfold oxygen vacancy (VO4), hafnium vacancy (VHf), and interstitial oxygen (IO). Trapping energy, energy band offset, and the trapping density were calculated and compared. Results show that VO3, VO4 only trap holes, VHf only trap electrons, and IO trap electrons and holes; the most important is the trapping energy which is greater in VHf. It is the best for trapping charges; because the charge tunneling into trapping layer is easy in VHf. It can also reduce the tunneling time. Finally, the trapping densities were compared with each other: VHf's trapping density is greater than other defects, i.e. charges can be trapped easier than by other defects. All of these show that VHf is the best one for reducing programming time. This paper will provide a theoretical guidance for increasing the programming speed ofCTM.
-
Keywords:
- charge trapping memories /
- programming speed /
- hafnium vacancy /
- the first principle
[1] Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888
[2] Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102
[3] Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 518
[4] Zeng Y J, Dai Y H, Chen J N 2012 Materials and Structures 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]
[5] Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Y. Yeo C, Yoo W J 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 p1
[6] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265
[7] Paul A, Sridhar Ch, Gedam S, Mahapatra S 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 393
[8] Maikap S, Lee H Y, Wang T Y, Tzeng P-J, Wang C C, L S Lee, K C Liu, Yang J-R , Tsai M-J 2007 Semiconductor Science and Technology 22 884
[9] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 56 6592]
[10] Sun B, Liu S J, Zhu W J 2006 Acta Phys. Sin. 55 6589 (in Chinese) [孙博, 刘绍军, 祝文军 2006 55 6589]
[11] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 55 4208]
[12] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王轶农, 杨大智 2006 55 2877]
[13] Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710 (in Chinese) [徐力方, 顾长志, 于洋 2004 53 2710]
[14] Zhang W, Hou Z F 2012 Phys. Status Solid B 250 352
[15] Foster A S, Gejo F L, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117
[16] Cho D Y, Lee J M, Oh S J, Jang H, Kim J Y, Park J H, Tanaka A 2007 Phys. Rev. B 76 165411
[17] Li D J, Liu M, Long S B, Wang Q, Zhang M H, Liu J, Yang S Q, Wang Y, Yang X N, Chen J N, Dai Y H 2009 Nanoelectronic Device & Technology 46 518 (in Chinese) [李德君, 刘明, 龙世兵, 王琴, 张满红, 刘璟, 杨仕谦, 王永, 杨潇楠, 陈军宁, 代月花 2009 纳米器件与技术 46 518]
[18] Spiga S, Congedo G, Russo U, Spiga S, Congedo G, Russo U, Lamperti A, Salicio O, Driussi F, Vianello E 2010 Solid-State Device Research Conference, European Sevilla Sept. 14-16 2010 p408
[19] Park J, Cho M, Kim S K, Park T J, Lee S W, Hong S H, Hwang C S 2005 Appl. Phys. Lett. 86 112907
[20] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
[21] Zhou M X, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 Journal of Semiconductors 33 072002
[22] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectronic Engineering 78 1866
[23] Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 86 012102
[24] Zheng J X, Ceder, Maxisch T, Chim W K, Choi W K 2009 Phys. Rev. B 75 104112
-
[1] Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888
[2] Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102
[3] Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 518
[4] Zeng Y J, Dai Y H, Chen J N 2012 Materials and Structures 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]
[5] Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Y. Yeo C, Yoo W J 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 p1
[6] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265
[7] Paul A, Sridhar Ch, Gedam S, Mahapatra S 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 393
[8] Maikap S, Lee H Y, Wang T Y, Tzeng P-J, Wang C C, L S Lee, K C Liu, Yang J-R , Tsai M-J 2007 Semiconductor Science and Technology 22 884
[9] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 56 6592]
[10] Sun B, Liu S J, Zhu W J 2006 Acta Phys. Sin. 55 6589 (in Chinese) [孙博, 刘绍军, 祝文军 2006 55 6589]
[11] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 55 4208]
[12] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王轶农, 杨大智 2006 55 2877]
[13] Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710 (in Chinese) [徐力方, 顾长志, 于洋 2004 53 2710]
[14] Zhang W, Hou Z F 2012 Phys. Status Solid B 250 352
[15] Foster A S, Gejo F L, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117
[16] Cho D Y, Lee J M, Oh S J, Jang H, Kim J Y, Park J H, Tanaka A 2007 Phys. Rev. B 76 165411
[17] Li D J, Liu M, Long S B, Wang Q, Zhang M H, Liu J, Yang S Q, Wang Y, Yang X N, Chen J N, Dai Y H 2009 Nanoelectronic Device & Technology 46 518 (in Chinese) [李德君, 刘明, 龙世兵, 王琴, 张满红, 刘璟, 杨仕谦, 王永, 杨潇楠, 陈军宁, 代月花 2009 纳米器件与技术 46 518]
[18] Spiga S, Congedo G, Russo U, Spiga S, Congedo G, Russo U, Lamperti A, Salicio O, Driussi F, Vianello E 2010 Solid-State Device Research Conference, European Sevilla Sept. 14-16 2010 p408
[19] Park J, Cho M, Kim S K, Park T J, Lee S W, Hong S H, Hwang C S 2005 Appl. Phys. Lett. 86 112907
[20] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
[21] Zhou M X, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 Journal of Semiconductors 33 072002
[22] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectronic Engineering 78 1866
[23] Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 86 012102
[24] Zheng J X, Ceder, Maxisch T, Chim W K, Choi W K 2009 Phys. Rev. B 75 104112
计量
- 文章访问数: 6614
- PDF下载量: 577
- 被引次数: 0