-
研究广义Hamilton系统在无限小变换下的共形不变性与Mei对称性,给出系统共形不变性同时是Mei对称性的充分必要条件,得到广义Hamilton系统共形不变性导致的Mei守恒量,举例说明结果的应用.
-
关键词:
- 广义Hamilton 系统 /
- 共形不变性 /
- Mei 对称性
In this paper, the conformal invariance and Mei symmetry for a generalized Hamilton system under infinitesimal transformations are discussed in details. A necessary and sufficient condition for conformal invariance of systems to be Mei symmetry is given. We get the Mei conserved quantities of the conformal invariance. Finally, an example is given to illustrate the application of the result.-
Keywords:
- generalized Hamilton system /
- conformal invariance /
- Mei symmetry
[1] Noether A E 1918 Nachr. Akad. Wiss. Gottingen: Math. Phys. 2 235
[2] Lutzky M 1979 J. Phys A: Math Gen. 12 973
[3] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[4] Fang J H 2003 Commun. Theor. Phys. 40 269
[5] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese) [罗绍凯 2003 52 2941]
[6] Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 52 1048]
[7] Liu C, Liu S X, Mei F X, Guo Y X 2008 Acta Phys. Sin. 57 6709 (in Chinese) [刘畅, 刘世兴, 梅凤翔, 郭永新 2008 57 6709]
[8] Wu H B 2004 Tran. of Beijing Inst. of Technol. 24 20 (in Chinese) [吴慧彬 2004 北京理工大学学报 24 20]
[9] Jia L Q, Zheng S W 2006 Acta Phys. Sin. 55 3829 (in Chinese) [贾利群, 郑世旺 2006 55 3829]
[10] Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]
[11] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]
[12] Guo X Y, Liu H W, Xu Z H 2013 Journal of Northeast Dianli University 33 162 (in Chinese) [郭秀英, 刘洪伟, 徐中海 2013 东北电力大学学报 33 162]
[13] Fang J H, Ding N, Wang P 2007 Chin. Phys. 16 887
[14] Cui J C, Zhang Y Y, Jia L Q 2009 Chin. Phys. B 18 1731
[15] Jia L Q, Xie Y L, Zhang Y Y, Yang X F 2010 Chin. Phys. B 19 110301
[16] Robert M L, Matthew P 2001 J. Geom. Phys. 39 276
[17] Luo S K, Li Z J, Peng W, Li L 2013 Acta Mech. 224 71
[18] Luo S K, Li L 2013 Nonlinear Dyn. 73 339
[19] Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475
[20] Luo S K, Li L 2013 Nonlinear Dyn. 73 639
[21] Li L, Peng W, Xu Y L, Luo S K 2013 Nonlinear Dyn. 72 663
-
[1] Noether A E 1918 Nachr. Akad. Wiss. Gottingen: Math. Phys. 2 235
[2] Lutzky M 1979 J. Phys A: Math Gen. 12 973
[3] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[4] Fang J H 2003 Commun. Theor. Phys. 40 269
[5] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese) [罗绍凯 2003 52 2941]
[6] Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 52 1048]
[7] Liu C, Liu S X, Mei F X, Guo Y X 2008 Acta Phys. Sin. 57 6709 (in Chinese) [刘畅, 刘世兴, 梅凤翔, 郭永新 2008 57 6709]
[8] Wu H B 2004 Tran. of Beijing Inst. of Technol. 24 20 (in Chinese) [吴慧彬 2004 北京理工大学学报 24 20]
[9] Jia L Q, Zheng S W 2006 Acta Phys. Sin. 55 3829 (in Chinese) [贾利群, 郑世旺 2006 55 3829]
[10] Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]
[11] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]
[12] Guo X Y, Liu H W, Xu Z H 2013 Journal of Northeast Dianli University 33 162 (in Chinese) [郭秀英, 刘洪伟, 徐中海 2013 东北电力大学学报 33 162]
[13] Fang J H, Ding N, Wang P 2007 Chin. Phys. 16 887
[14] Cui J C, Zhang Y Y, Jia L Q 2009 Chin. Phys. B 18 1731
[15] Jia L Q, Xie Y L, Zhang Y Y, Yang X F 2010 Chin. Phys. B 19 110301
[16] Robert M L, Matthew P 2001 J. Geom. Phys. 39 276
[17] Luo S K, Li Z J, Peng W, Li L 2013 Acta Mech. 224 71
[18] Luo S K, Li L 2013 Nonlinear Dyn. 73 339
[19] Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475
[20] Luo S K, Li L 2013 Nonlinear Dyn. 73 639
[21] Li L, Peng W, Xu Y L, Luo S K 2013 Nonlinear Dyn. 72 663
计量
- 文章访问数: 6711
- PDF下载量: 527
- 被引次数: 0