搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含时滞的非保守系统动力学的Noether对称性

张毅 金世欣

引用本文:
Citation:

含时滞的非保守系统动力学的Noether对称性

张毅, 金世欣

Noether symmetries of dynamics for non-conservative systems with time delay

Zhang Yi, Jin Shi-Xin
PDF
导出引用
  • 提出并研究含时滞的非保守系统动力学的Noether对称性与守恒量. 首先,建立含时滞的非保守系统的Hamilton原理,得到含时滞的Lagrange方程;其次,基于含时滞的Hamilton作用量在依赖于广义速度的无限小群变换下的不变性,定义系统的Noether对称变换和准对称变换,建立Noether对称性的判据;最后,研究对称性与守恒量之间的关系,建立含时滞的非保守系统的Noether理论. 文末举例说明结果的应用.
    The Noether symmetries and the conserved quantities of dynamics for non-conservative systems with time delay are proposed and studied. Firstly, the Hamilton principle for non-conservative systems with time delay is established, and the Lagrange equations with time delay are obtained. Secondly, based upon the invariance of the Hamilton action with time delay under a group of infinitesimal transformations which depends on the generalized velocities, the generalized coordinates and the time, the Noether symmetric transformations and the Noether quasi-symmetric transformations of the system are defined and the criteria of the Noether symmetries are established. Finally, the relationship between the symmetries and the conserved quantities are studied, and the Noether theory of non-conservative systems with time delay is established At the end of the paper, some examples are given to illustrate the application of the results.
    • 基金项目: 国家自然科学基金(批准号:10972151,11272227)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972151, 11272227).
    [1]

    Hu H Y, Wang Z H 1999 Adv. Mech. 29 501 (in Chinese) [胡海岩, 王在华 1999 力学进展 29 501]

    [2]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [3]

    Wang Z H, Hu H Y 2013 Adv. Mech. 43 3 (in Chinese) [王在华, 胡海岩 2013 力学进展 43 3]

    [4]

    Djukić Dj S, Vujanović B 1975 Acta Mech. 23 17

    [5]

    Li Z P 1981 Acta Phys. Sin. 30 1699 (in Chinese) [李子平 1981 30 1699]

    [6]

    Bahar L Y, Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [7]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [8]

    Xu X J, Mei F X 2005 Chin. Phys. 14 449

    [9]

    Luo S K 2007 Chin. Phys. Lett. 24 3017

    [10]

    Fu J L, Chen B Y, Chen L Q 2009 Phys. Lett. A 373 409

    [11]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [12]

    Bluman G W, Anco S C 2002 Symmety and Integration Methods for Differential Equations (New York: Springer-Verlag)

    [13]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Wang P, Wang X M, Fang J H 2009 Chin. Phys. Lett. 26 034501

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)]

    [17]

    Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese) [张毅 2002 51 461]

    [18]

    Long Z X, Zhang Y 2013 Acta Mech. Doi: 10.1007/s00707-013-0956-5

    [19]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社)]

    [20]

    Hojman S 1984 J. Phys. A: Math. Gen. 17 2399

    [21]

    Mei F X, Wu H B 2008 Phys. Lett. A 372 2141

    [22]

    Zhang Y 2011 Chin. Phys. B 20 034502

    [23]

    El’sgol’c L E 1964 Qualitative Methods in Mathematical Analysis (Providence: American Mathematical Society)

    [24]

    Hughes D K 1968 J. Optim. Theory Appl. 2 1

    [25]

    Palm W J, Schmitendorf W E 1974 J. Optim. Theory Appl. 14 599

    [26]

    Rosenblueth J F 1988 IMA J. Math. Control Inform. 5 125

    [27]

    Chan W L, Yung S P 1993 J. Optim. Theory Appl. 76 131

    [28]

    Lee C H, Yung S P 1996 J. Optim. Theory Appl. 88 157

    [29]

    Frederico G S F, Torres D F M 2012 Control Optim. 2 619

    [30]

    Mei F X, Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

  • [1]

    Hu H Y, Wang Z H 1999 Adv. Mech. 29 501 (in Chinese) [胡海岩, 王在华 1999 力学进展 29 501]

    [2]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [3]

    Wang Z H, Hu H Y 2013 Adv. Mech. 43 3 (in Chinese) [王在华, 胡海岩 2013 力学进展 43 3]

    [4]

    Djukić Dj S, Vujanović B 1975 Acta Mech. 23 17

    [5]

    Li Z P 1981 Acta Phys. Sin. 30 1699 (in Chinese) [李子平 1981 30 1699]

    [6]

    Bahar L Y, Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [7]

    Mei F X 2001 Int. J. Non-Linear Mech. 36 817

    [8]

    Xu X J, Mei F X 2005 Chin. Phys. 14 449

    [9]

    Luo S K 2007 Chin. Phys. Lett. 24 3017

    [10]

    Fu J L, Chen B Y, Chen L Q 2009 Phys. Lett. A 373 409

    [11]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. 73 783

    [12]

    Bluman G W, Anco S C 2002 Symmety and Integration Methods for Differential Equations (New York: Springer-Verlag)

    [13]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Wang P, Wang X M, Fang J H 2009 Chin. Phys. Lett. 26 034501

    [16]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)]

    [17]

    Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese) [张毅 2002 51 461]

    [18]

    Long Z X, Zhang Y 2013 Acta Mech. Doi: 10.1007/s00707-013-0956-5

    [19]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社)]

    [20]

    Hojman S 1984 J. Phys. A: Math. Gen. 17 2399

    [21]

    Mei F X, Wu H B 2008 Phys. Lett. A 372 2141

    [22]

    Zhang Y 2011 Chin. Phys. B 20 034502

    [23]

    El’sgol’c L E 1964 Qualitative Methods in Mathematical Analysis (Providence: American Mathematical Society)

    [24]

    Hughes D K 1968 J. Optim. Theory Appl. 2 1

    [25]

    Palm W J, Schmitendorf W E 1974 J. Optim. Theory Appl. 14 599

    [26]

    Rosenblueth J F 1988 IMA J. Math. Control Inform. 5 125

    [27]

    Chan W L, Yung S P 1993 J. Optim. Theory Appl. 76 131

    [28]

    Lee C H, Yung S P 1996 J. Optim. Theory Appl. 88 157

    [29]

    Frederico G S F, Torres D F M 2012 Control Optim. 2 619

    [30]

    Mei F X, Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

  • [1] 楼智美. 均匀磁场中二维各向同性带电谐振子的守恒量与对称性研究.  , 2013, 62(22): 220201. doi: 10.7498/aps.62.220201
    [2] 张毅. 相对论性力学系统的Birkhoff对称性与守恒量.  , 2012, 61(21): 214501. doi: 10.7498/aps.61.214501
    [3] 刘畅, 赵永红, 陈向炜. 动力学系统Noether对称性的几何表示.  , 2010, 59(1): 11-14. doi: 10.7498/aps.59.11
    [4] 董文山, 黄宝歆. 广义非完整力学系统的Lie对称性与Noether守恒量.  , 2010, 59(1): 1-6. doi: 10.7498/aps.59.1
    [5] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量.  , 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [6] 楼智美. 一维减幅-增幅谐振子的守恒量与对称性.  , 2008, 57(3): 1307-1310. doi: 10.7498/aps.57.1307
    [7] 楼智美. 一类多自由度线性耦合系统的对称性与守恒量研究.  , 2007, 56(5): 2475-2478. doi: 10.7498/aps.56.2475
    [8] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量.  , 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [9] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量.  , 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [10] 郑世旺, 傅景礼, 李显辉. 机电动力系统的动量依赖对称性和非Noether守恒量.  , 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [11] 顾书龙, 张宏彬. Vacco动力学方程的Mei对称性、Lie对称性和Noether对称性.  , 2005, 54(9): 3983-3986. doi: 10.7498/aps.54.3983
    [12] 张 毅. 广义经典力学系统的对称性与Mei守恒量.  , 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [13] 张 毅. 单面完整约束力学系统的形式不变性.  , 2004, 53(2): 331-336. doi: 10.7498/aps.53.331
    [14] 罗绍凯, 郭永新, 梅凤翔. 非完整系统的Noether对称性与Hojman守恒量.  , 2004, 53(5): 1270-1275. doi: 10.7498/aps.53.1270
    [15] 张 毅, 梅凤翔. 非保守力与非完整约束对Lagrange系统Noether对称性的影响.  , 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
    [16] 张 毅, 梅凤翔. 约束对Birkhoff系统Noether对称性和守恒量的影响.  , 2004, 53(8): 2419-2423. doi: 10.7498/aps.53.2419
    [17] 方建会, 闫向宏, 陈培胜. 相对论力学系统的形式不变性与Noether对称性.  , 2003, 52(7): 1561-1564. doi: 10.7498/aps.52.1561
    [18] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性.  , 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
    [19] 李元成, 张毅, 梁景辉. 一类非完整奇异系统的Lie对称性与守恒量.  , 2002, 51(10): 2186-2190. doi: 10.7498/aps.51.2186
    [20] 葛伟宽. Chaplygin系统的Noether对称性与形式不变性.  , 2002, 51(5): 939-942. doi: 10.7498/aps.51.939
计量
  • 文章访问数:  7221
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-08-05
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map