-
本文发展了开放式自屏蔽全身成像高场超导磁共振成像(MRI)磁体的优化设计方法,使设计出来的磁体仅有4 对超导线圈. 这种开放结构的超导MRI磁体优化设计方法集成了线性规划算法和遗传算法. 通过迭代线性规划算法可以在考虑成像区域(DSV)磁感应强度约束、磁场不均匀度约束、5 Gs线范围约束、线圈区域最大磁场值约束和最大环向应力约束的条件下,获得用线量最少的线圈初始形状和位置,同时可以得到每个线圈的层数和每层匝数;通过遗传算法可以提高DSV区域的磁场不均匀度,以达到高质量成像的要求. 这种集成的优化设计方法既可以灵活有效的设计开放式MRI磁体,也可以设计传统的圆柱形MRI磁体,本文通过一个1.2 T的开放式MRI磁体的设计清楚的展示了这种优化方法.
-
关键词:
- 线性规划算法 /
- 遗传算法 /
- 自屏蔽 /
- 开放式超导MRI磁体
We propose an optimization design method for actively shielded whole-body open high-field superconducting MRI magnet which accordingly has been simplified to contain only four pairs of superconducting coils. The new design method of open structure superconducting MRI magnet integrates the linear programming algorithm and the genetic algorithm optimization. Through several times of linear programming, and by taking into account the magnetic field, inhomogeneity in DSV, the scope of 5-Gauss fringe field, maximum hoop stress and maximum magnetic field, we can, with the least consumption of lines, get the coils’ initial position and shape, the number of layers of each coil and the number of turns of each layer. And the genetic algorithm was then employed to improve the magnetic field inhomogeneity in DSV to meet the requirements of high-quality imaging. This integrated optimization design method is flexible and effective for designing both open MRI magnet and traditional cylindrical MRI magnet. This paper also illustrates the method for a 1.2 T open MRI magnet optimization design.-
Keywords:
- linear programming algorithm /
- genetic algorithm /
- actively shielded /
- open superconducting MRI magnet
[1] Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701
[2] Zu D L, Guo H, Song X Y, Bao S L 2002 Chin. Phys. 11 1008
[3] Yuri Lvovsky, Peter Jarvis 2005 IEEE Transactions on Applied Superconductivity 15 1317
[4] Cosmus T C, Parizh M 2011 IEEE Transactions on Applied Superconductivity 21 2104
[5] Xu H, Conolly S M, Scott G C 2000 IEEE Transactions on Magnetics 36 476
[6] Shaw N R, Ansorg R E 2002 IEEE Transactions on Applied Superconductivity 12 733
[7] Crozier S, Zhao H, Doddrell M 2002 Concepts in Magnetic Resonance 15B 208
[8] Cheng, Y C N,Eagan T P,Brown R W 2003 Magnetic Resonance Materials in Physics, Biology and Medicine 16 57
[9] Vegh V, Tieng Q M,Brereton I M 2009 Concepts in Magnetic Resonance 35B 180
[10] Tieng Q M, Vegh V, Brereton I M 2009 Journal of Magnetic Resonance 196 1
[11] Crozier S, Doddrell D M 1997 Journal of Magnetic Resonance 127 233
[12] Zhao H, Crozier S, Doddrell D M 2001 Magnetic Resonance in Medicine 45 331
[13] Wang C, Wang Q, Zhang Q 2010 IEEE Transactions on Applied Superconductivity 20 706
[14] Wang Q, Xu G, Dai Y 2009 IEEE Transactions on Applied Superconductivity 19 2289
[15] Kalafala A K 1990 IEEE Transactions on Magnetics 26 1181
[16] Ni Z P, Hu G, Li L K 2013 IEEE Transactions on Applied Superconductivity 23 4401104
[17] Berriaud C, Bermond S, Dechambre T 2012 IEEE Transactions on Applied Superconductivity 22 6001104
[18] Ni Z Z, Wang Q L, Yan L G 2013 Acta Phys. Sin. 62 020701 [倪志鹏, 王秋良, 严陆光 2013 62 020701]
[19] Tony Tadic, B Gino Fallone 2012 IEEE Transactions on Applied Superconductivity 22 4400107
[20] Zhang G Q, Du X J, Zhao L, Ning P F, Yao W C, Zhu Z A 2012 Acta Phys. Sin. 61 228701 [张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安 2012 61 228701]
[21] Zhang H J, Zong J, Li Q F 2006 Chinese Journal of Low Temperature Physics 28 258 [张宏杰, 宗军, 励庆孚 2006 低温 28 258]
[22] Zhang Q S 2012 Master Dissertation (Guangdong: South China University of Technology) (in Chinese) [张庆山 2012 硕士学位论文 (广东: 华南理工大学)]
-
[1] Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701
[2] Zu D L, Guo H, Song X Y, Bao S L 2002 Chin. Phys. 11 1008
[3] Yuri Lvovsky, Peter Jarvis 2005 IEEE Transactions on Applied Superconductivity 15 1317
[4] Cosmus T C, Parizh M 2011 IEEE Transactions on Applied Superconductivity 21 2104
[5] Xu H, Conolly S M, Scott G C 2000 IEEE Transactions on Magnetics 36 476
[6] Shaw N R, Ansorg R E 2002 IEEE Transactions on Applied Superconductivity 12 733
[7] Crozier S, Zhao H, Doddrell M 2002 Concepts in Magnetic Resonance 15B 208
[8] Cheng, Y C N,Eagan T P,Brown R W 2003 Magnetic Resonance Materials in Physics, Biology and Medicine 16 57
[9] Vegh V, Tieng Q M,Brereton I M 2009 Concepts in Magnetic Resonance 35B 180
[10] Tieng Q M, Vegh V, Brereton I M 2009 Journal of Magnetic Resonance 196 1
[11] Crozier S, Doddrell D M 1997 Journal of Magnetic Resonance 127 233
[12] Zhao H, Crozier S, Doddrell D M 2001 Magnetic Resonance in Medicine 45 331
[13] Wang C, Wang Q, Zhang Q 2010 IEEE Transactions on Applied Superconductivity 20 706
[14] Wang Q, Xu G, Dai Y 2009 IEEE Transactions on Applied Superconductivity 19 2289
[15] Kalafala A K 1990 IEEE Transactions on Magnetics 26 1181
[16] Ni Z P, Hu G, Li L K 2013 IEEE Transactions on Applied Superconductivity 23 4401104
[17] Berriaud C, Bermond S, Dechambre T 2012 IEEE Transactions on Applied Superconductivity 22 6001104
[18] Ni Z Z, Wang Q L, Yan L G 2013 Acta Phys. Sin. 62 020701 [倪志鹏, 王秋良, 严陆光 2013 62 020701]
[19] Tony Tadic, B Gino Fallone 2012 IEEE Transactions on Applied Superconductivity 22 4400107
[20] Zhang G Q, Du X J, Zhao L, Ning P F, Yao W C, Zhu Z A 2012 Acta Phys. Sin. 61 228701 [张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安 2012 61 228701]
[21] Zhang H J, Zong J, Li Q F 2006 Chinese Journal of Low Temperature Physics 28 258 [张宏杰, 宗军, 励庆孚 2006 低温 28 258]
[22] Zhang Q S 2012 Master Dissertation (Guangdong: South China University of Technology) (in Chinese) [张庆山 2012 硕士学位论文 (广东: 华南理工大学)]
计量
- 文章访问数: 7335
- PDF下载量: 764
- 被引次数: 0