搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯伪谱方法的混沌系统最优控制

曹小群

引用本文:
Citation:

基于高斯伪谱方法的混沌系统最优控制

曹小群

Optimal control for a chaotic system by means of Gauss pseudospectral method

Cao Xiao-Qun
PDF
导出引用
  • 针对混沌系统最优控制问题,提出一种基于高斯伪谱方法的数值求解新算法. 首先在勒让德-高斯点上构造Lagrange插值多项式并近似表示混沌系统最优控制中的状态变量和控制变量;接着将连续空间的最优控制问题转化为非线性规划问题;然后通过序列二次规划(SQP)算法获得最优解;最后对三个典型混沌系统的仿真实验结果表明,新方法能有效和快速地实现混沌系统的最优控制.
    A new numerical method is presented to solve optimal control problem of a chaotic system based on Gauss pseudospectral method (GPM). Firstly, the Lagrange interpolation polynomials are constructed on Legendre-Gauss nodes and used to parameterize the state and control the trajectories in optimal control of the chaotic system. Then, the chaotic optimal control problem in the continuous space is transformed into a nonlinear programming (NLP) problem through GPM. Furthermore, the NLP problem is solved by the sequential quadratic programming algorithm. Finally, the proposed method is applied to the optimal control of the typical Lorenz, Chen, and Liu chaotic systems respectively. The simulation processes indicate that the GPM is effective, fast and feasible for solving optimal control problems of chaotic systems.
    • 基金项目: 国家自然科学基金(批准号:41105063,41375105)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41105063, 41375105).
    [1]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [2]

    Bemardo M D 1996 Phys. Lett. A 214 7139

    [3]

    Zhu S P, Qian F C, Liu D 2010 Acta Phys. Sin. 59 2250 (in Chinese) [朱少平, 钱富才, 刘丁 2010 59 2250]

    [4]

    Wang X Y, Wang M J 2008 Acta Phys. Sin. 57 0731 (in Chinese) [王兴元, 王明军 2008 57 0731]

    [5]

    Liu D, Qian F C, Ren H P 2004 Acta Phys. Sin. 53 2074 (in Chinese) [刘丁, 钱富才, 任海鹏 2004 53 2074]

    [6]

    Zhang J S, Xiao X C 2001 Acta Phys. Sin. 50 2092 (in Chinese) [张家树, 肖先赐 2001 50 2092]

    [7]

    Tan W, Wang Y N 2004 Acta Phys. Sin. 53 4087 (in Chinese) [谭文, 王耀南 2004 53 4087]

    [8]

    Liu F C, Liang X M, Song J Q 2008 Acta Phys. Sin. 57 1458 (in Chinese) [刘福才, 梁晓明, 宋佳秋 2008 57 1458]

    [9]

    Chen L Q 2002 Chin. Phys. 11 900

    [10]

    Zhang S H, Shen K 2003 Chin. Phys. 12 149

    [11]

    Sun F Y 2006 Chin. Phys. Lett. 23 32

    [12]

    Ma M, Zheng Y A, Hu F Y, Zhao L 2009 Computer Simulation 28 409 (in Chinese) [马明, 郑永爱, 胡冯仪, 赵磊 2009 计算机仿真 28 409]

    [13]

    Rafikov M, Balthazar J M 2004 Phys. Lett. A 333 241

    [14]

    Awad El-Gohary, Ammar Sarhan 2006 Chaos, Solitons and Fractals 30 1122

    [15]

    Awad El-Gohary 2006 Chaos, Solitons and Fractals 27 345

    [16]

    Liu W, Chen G 2003 Int. J. Bifurcation and chaos 13 261

    [17]

    Betts J T 1998 Journal of Guidance, Control, and Dynamics 21 193

    [18]

    Bryson A E, Ho Y C 1975 Applied Optimal Control: Optimization, Estimation and Control (New York: John Wiley and Sons)

    [19]

    Kirk D E 2003 Optimal Control Theory: An Introduction (New York: Dover Publications)

    [20]

    Benson D A 2005 Ph. D. Dissertation (Massachusetts Institute of Technology, USA)

    [21]

    Rao A V, Benson D, Darby C, Patterson M A, Francolin C, Sanders I, Huntington G T 2010 ACM Trans. Mathematical Software 37 1

    [22]

    Boggs P T, Jon W T 1995 J. Comp. Appl. Math. 124 123

    [23]

    Philip E G 2005 SIAM Review 47 99

    [24]

    Cao X Q, Song J Q, Zhang W M, Zhao J 2011 Acta Phys. Sin. 60 070511 (in Chinese) [曹小群, 宋君强, 张卫民, 赵军 2011 60 070511]

    [25]

    Cao X Q, Song J Q, Zhang W M, Zhu X Q 2011 Acta Phys. Sin. 60 080401 (in Chinese) [曹小群, 宋君强, 张卫民, 朱小谦 2011 60 080401]

    [26]

    He J H 2008 Int. J. Modern. Phys. B 22 3487

    [27]

    He J H 2000 Appl. Math. Mech. 21 797

    [28]

    He J H 2001 Int. J. Nonlin. Sci. Numer. 2 309

    [29]

    He J H, Lee E W M 2009 Phys. Lett. A 373 1644

    [30]

    Peng H J, Gao Q, Wu Z G, Zhong W X 2011 Acta Auto. Sin. 37 1248 (in Chinese) [彭海军, 高强, 吴志刚, 钟万勰 2011 自动化学报 37 1248]

    [31]

    Peng H J, Gao Q, Wu Z G, Zhong W X 2010 Appl. Math. Mech. 31 1251

    [32]

    Gao Q, Peng H J, Wu Z G, Zhong W X 2010 Journal of Dynamics and Control 8 1 (in Chinese) [高强, 彭海军, 吴志刚, 钟万勰 2010 动力学与控制学报 8 1]

  • [1]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [2]

    Bemardo M D 1996 Phys. Lett. A 214 7139

    [3]

    Zhu S P, Qian F C, Liu D 2010 Acta Phys. Sin. 59 2250 (in Chinese) [朱少平, 钱富才, 刘丁 2010 59 2250]

    [4]

    Wang X Y, Wang M J 2008 Acta Phys. Sin. 57 0731 (in Chinese) [王兴元, 王明军 2008 57 0731]

    [5]

    Liu D, Qian F C, Ren H P 2004 Acta Phys. Sin. 53 2074 (in Chinese) [刘丁, 钱富才, 任海鹏 2004 53 2074]

    [6]

    Zhang J S, Xiao X C 2001 Acta Phys. Sin. 50 2092 (in Chinese) [张家树, 肖先赐 2001 50 2092]

    [7]

    Tan W, Wang Y N 2004 Acta Phys. Sin. 53 4087 (in Chinese) [谭文, 王耀南 2004 53 4087]

    [8]

    Liu F C, Liang X M, Song J Q 2008 Acta Phys. Sin. 57 1458 (in Chinese) [刘福才, 梁晓明, 宋佳秋 2008 57 1458]

    [9]

    Chen L Q 2002 Chin. Phys. 11 900

    [10]

    Zhang S H, Shen K 2003 Chin. Phys. 12 149

    [11]

    Sun F Y 2006 Chin. Phys. Lett. 23 32

    [12]

    Ma M, Zheng Y A, Hu F Y, Zhao L 2009 Computer Simulation 28 409 (in Chinese) [马明, 郑永爱, 胡冯仪, 赵磊 2009 计算机仿真 28 409]

    [13]

    Rafikov M, Balthazar J M 2004 Phys. Lett. A 333 241

    [14]

    Awad El-Gohary, Ammar Sarhan 2006 Chaos, Solitons and Fractals 30 1122

    [15]

    Awad El-Gohary 2006 Chaos, Solitons and Fractals 27 345

    [16]

    Liu W, Chen G 2003 Int. J. Bifurcation and chaos 13 261

    [17]

    Betts J T 1998 Journal of Guidance, Control, and Dynamics 21 193

    [18]

    Bryson A E, Ho Y C 1975 Applied Optimal Control: Optimization, Estimation and Control (New York: John Wiley and Sons)

    [19]

    Kirk D E 2003 Optimal Control Theory: An Introduction (New York: Dover Publications)

    [20]

    Benson D A 2005 Ph. D. Dissertation (Massachusetts Institute of Technology, USA)

    [21]

    Rao A V, Benson D, Darby C, Patterson M A, Francolin C, Sanders I, Huntington G T 2010 ACM Trans. Mathematical Software 37 1

    [22]

    Boggs P T, Jon W T 1995 J. Comp. Appl. Math. 124 123

    [23]

    Philip E G 2005 SIAM Review 47 99

    [24]

    Cao X Q, Song J Q, Zhang W M, Zhao J 2011 Acta Phys. Sin. 60 070511 (in Chinese) [曹小群, 宋君强, 张卫民, 赵军 2011 60 070511]

    [25]

    Cao X Q, Song J Q, Zhang W M, Zhu X Q 2011 Acta Phys. Sin. 60 080401 (in Chinese) [曹小群, 宋君强, 张卫民, 朱小谦 2011 60 080401]

    [26]

    He J H 2008 Int. J. Modern. Phys. B 22 3487

    [27]

    He J H 2000 Appl. Math. Mech. 21 797

    [28]

    He J H 2001 Int. J. Nonlin. Sci. Numer. 2 309

    [29]

    He J H, Lee E W M 2009 Phys. Lett. A 373 1644

    [30]

    Peng H J, Gao Q, Wu Z G, Zhong W X 2011 Acta Auto. Sin. 37 1248 (in Chinese) [彭海军, 高强, 吴志刚, 钟万勰 2011 自动化学报 37 1248]

    [31]

    Peng H J, Gao Q, Wu Z G, Zhong W X 2010 Appl. Math. Mech. 31 1251

    [32]

    Gao Q, Peng H J, Wu Z G, Zhong W X 2010 Journal of Dynamics and Control 8 1 (in Chinese) [高强, 彭海军, 吴志刚, 钟万勰 2010 动力学与控制学报 8 1]

  • [1] 孔新雷, 吴惠彬. Birkhoff系统的离散最优控制及其在航天器交会对接中的应用.  , 2017, 66(8): 084501. doi: 10.7498/aps.66.084501
    [2] 薛楷嘉, 王从庆. 基于在线误差修正自适应SVR的非线性不确定分数阶混沌系统滑模控制.  , 2015, 64(7): 070502. doi: 10.7498/aps.64.070502
    [3] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究.  , 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [4] 杨红, 王瑞. 基于反馈和多最小二乘支持向量机的分数阶混沌系统控制.  , 2011, 60(7): 070508. doi: 10.7498/aps.60.070508
    [5] 周小勇. 一种具有恒Lyapunov指数谱的混沌系统及其电路仿真.  , 2011, 60(10): 100503. doi: 10.7498/aps.60.100503
    [6] 刘朝华, 张英杰, 章兢, 吴建辉. 基于免疫双态微粒群的混沌系统自抗扰控制.  , 2011, 60(1): 019501. doi: 10.7498/aps.60.019501
    [7] 孙常春, 方勃, 黄文虎. 基于线性状态反馈的混沌系统全局控制.  , 2011, 60(11): 110503. doi: 10.7498/aps.60.110503
    [8] 吴然超, 郭玉祥. 含一个非线性项混沌系统的线性控制及反控制.  , 2010, 59(8): 5293-5298. doi: 10.7498/aps.59.5293
    [9] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步.  , 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [10] 刘福才, 宋佳秋. 基于主动滑模控制的一类混沌系统异结构反同步.  , 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [11] 张 敏, 胡寿松. 不确定时滞混沌系统的自适应动态神经网络控制.  , 2008, 57(3): 1431-1438. doi: 10.7498/aps.57.1431
    [12] 张琪昌, 田瑞兰, 王 炜. 一类机电耦合非线性动力系统的混沌动力学特征.  , 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [13] 李文林, 宋运忠. 不确定非线性系统混沌反控制.  , 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [14] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究.  , 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [15] 邵仕泉, 高 心, 刘兴文. 两个耦合的分数阶Chen系统的混沌投影同步控制.  , 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
    [16] 罗润梓. 一个新混沌系统的脉冲控制与同步.  , 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [17] 陈 晶, 张天平, 闾立新. 具有死区非线性输入的一类不确定混沌系统的自适应控制.  , 2007, 56(2): 686-692. doi: 10.7498/aps.56.686
    [18] 刘 丁, 钱富才, 任海鹏, 孔志强. 离散混沌系统的最小能量控制.  , 2004, 53(7): 2074-2079. doi: 10.7498/aps.53.2074
    [19] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统.  , 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
    [20] 李智, 韩崇昭. 一类含参数不确定性混沌系统的自适应控制.  , 2001, 50(5): 847-850. doi: 10.7498/aps.50.847
计量
  • 文章访问数:  6455
  • PDF下载量:  848
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-30
  • 修回日期:  2013-09-06
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map