搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究

景蔚萱 王兵 牛玲玲 齐含 蒋庄德 陈路加 周帆

引用本文:
Citation:

ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究

景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆

Relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowire films

Jing Wei-Xuan, Wang Bing, Niu Ling-Ling, Qi Han, Jiang Zhuang-De, Chen Lu-Jia, Zhou Fan
PDF
导出引用
  • 水浴法合成ZnO纳米线薄膜的工艺参数直接影响其表面形貌, 并使其接触角及润湿性能发生变化. 本文仿真分析了轮廓算数平均偏差、偏斜度、峭度、相关长度等特征参数对随机粗糙表面特性的影响规律; 改变生长时间、种子层溶液和生长液的浓度, 批量制备了表面形貌不同的ZnO纳米线薄膜; 提出了取样长度的确定方法, 并基于扫描电镜图像和Matlab图像处理算子对ZnO纳米线薄膜表面形貌的特征参数进行了提取; 将表面形貌高度和水平方向的特征参数引入Wenzel模型, 分析了合成参数、表面形貌特征参数与接触角的影响关系. 结果表明, 合成参数变化时, 选择取样长度5.0 μm为宜; 生长液浓度大于0.125 mol/L时, ZnO纳米线之间发生重结晶, 并呈现疏水性; 改变种子层溶液浓度和生长时间, 均得到超亲水表面. 上述结论可用于不同氧化酶、细胞等在ZnO纳米线薄膜上的有效吸附及相应传感器测试性能的进一步提高.
    Synthesizing parameters in the hydrothermal method can affect directly the morphology and the contact angles of ZnO nanowires films, and thus the controllable wettability. In this paper effects of characteristic parameters on the properties of random rough surfaces are simulated, including arithmetical mean deviation of the profile, skewness, kurtosis and correlation length. Batches of ZnO nanowires films with varied morphology were synthesized in different concentrations of seed layer solution and growth solution, as well as growth time spans. Sampling length was determined and characteristic parameters of the profiles of ZnO nanowires films were extracted based on SEM micrographs and specific operators of Matlab software. With vertical and lateral parameters of the morphology introduced into Wenzel model, relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowires films were established. It is conculded that the sampling length was determined to be 5 μm, crystallization between ZnO nanowires occurred as the concentration of growth solution was larger than 0.125 mol/L, resulting in hydrophobic ZnO nanowires films; different concentrations of seed layer solution and growth time spans led to hydrophilic ZnO nanowire films. These results can be used to immobilize various enzymes on ZnO nanowires films and further to improve the property of ZnO nanowires-based bio-sensors.
    • 基金项目: 国家自然科学基金(批准号: 51075324, 90923001)、教育部科学研究重大项目 (批准号: 311001) 和长江学者和创新团队发展计划 (批准号: IRT1033) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51075324, 90923001), the Key Program of the Ministry of Education of China (Grant No. 311001) and the Program of Chang Jiang Scholars and Innovative Research Team in University, China (Grant No. IRT1033).
    [1]

    Dar G H, Umar A, Zaidi S A, Baskoutas S, Kim S H, Abaker M, Al-Hajry A, AL-Sayari S A 2011 Science of Advanced Materials 3 901

    [2]

    Zhao Z, Lei W, Zhang X, Wang B, Jiang H 2010 Sensors 10 1216

    [3]

    Li D Z, Zhu R 2013 Chin. Phys. B 22 018502

    [4]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702

    [5]

    Chang S J, Weng W Y, Hsu C L, Hsueh T J 2010 Nano Communication Networks 1 283

    [6]

    Ciofani G, Genchi G G, Mattoli V 2012 Materials Science and Engineering C 32 341

    [7]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 0252901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 0252901]

    [8]

    Zheng Z K, Duanmu Q D, Zhao G X, Wang L D, Shen D Z 2012 Chin. Phys. Lett. 29 017804

    [9]

    Chen X M, Ji Y, Gao X Y, Zhao X W 2012 Chin. Phys. B 21 116801

    [10]

    Yang Y H, Li Z Y, Wang B, Wang C X, Chen D H, Yang G W 2005 J. Phys.: Condens. Matter 17 5441

    [11]

    Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B 2004 J. Am. Chem. Soc. 126 62

    [12]

    L J G, Huang K, Chen X M, Zhu J B, Meng F M, Song X P, Sun Z Q 2010 Applied Surface Science 256 4720

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [14]

    Reizer R 2010 Wear 271 539

    [15]

    Watson W, Spedding T A 1982 Wear 83 215

    [16]

    Hu Y Z, Tonder K 1992 Mach Tools Manufact 32 83

    [17]

    Wenzel R N 1936 Industrial and Engineering Chemistry 28 988

    [18]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [19]

    McHale G 2007 Langmuir 23 8200

    [20]

    Nosonovsky M, Bhushan B 2008 Langmuir 24 1525

    [21]

    Sun H, Zhang Q F, Wu J L 2006 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2006 56 3479]

    [22]

    He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 Journal of Colloid and Interface Science 364 219

    [23]

    Youssef S, Combette P, Podlecki J, Al-Asmar R, Foucaran A 2009 Cryst. Growth Des. 9 1088

    [24]

    Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N, Zhao W 2012 Chin. Phys. B 21 098001

    [25]

    ISO 4287:1997, Geometrical Product Specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters

    [26]

    Nosonovsky M 2007 Langmuir 23 9919

  • [1]

    Dar G H, Umar A, Zaidi S A, Baskoutas S, Kim S H, Abaker M, Al-Hajry A, AL-Sayari S A 2011 Science of Advanced Materials 3 901

    [2]

    Zhao Z, Lei W, Zhang X, Wang B, Jiang H 2010 Sensors 10 1216

    [3]

    Li D Z, Zhu R 2013 Chin. Phys. B 22 018502

    [4]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702

    [5]

    Chang S J, Weng W Y, Hsu C L, Hsueh T J 2010 Nano Communication Networks 1 283

    [6]

    Ciofani G, Genchi G G, Mattoli V 2012 Materials Science and Engineering C 32 341

    [7]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 0252901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 0252901]

    [8]

    Zheng Z K, Duanmu Q D, Zhao G X, Wang L D, Shen D Z 2012 Chin. Phys. Lett. 29 017804

    [9]

    Chen X M, Ji Y, Gao X Y, Zhao X W 2012 Chin. Phys. B 21 116801

    [10]

    Yang Y H, Li Z Y, Wang B, Wang C X, Chen D H, Yang G W 2005 J. Phys.: Condens. Matter 17 5441

    [11]

    Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B 2004 J. Am. Chem. Soc. 126 62

    [12]

    L J G, Huang K, Chen X M, Zhu J B, Meng F M, Song X P, Sun Z Q 2010 Applied Surface Science 256 4720

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [14]

    Reizer R 2010 Wear 271 539

    [15]

    Watson W, Spedding T A 1982 Wear 83 215

    [16]

    Hu Y Z, Tonder K 1992 Mach Tools Manufact 32 83

    [17]

    Wenzel R N 1936 Industrial and Engineering Chemistry 28 988

    [18]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [19]

    McHale G 2007 Langmuir 23 8200

    [20]

    Nosonovsky M, Bhushan B 2008 Langmuir 24 1525

    [21]

    Sun H, Zhang Q F, Wu J L 2006 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2006 56 3479]

    [22]

    He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 Journal of Colloid and Interface Science 364 219

    [23]

    Youssef S, Combette P, Podlecki J, Al-Asmar R, Foucaran A 2009 Cryst. Growth Des. 9 1088

    [24]

    Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N, Zhao W 2012 Chin. Phys. B 21 098001

    [25]

    ISO 4287:1997, Geometrical Product Specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters

    [26]

    Nosonovsky M 2007 Langmuir 23 9919

  • [1] 乔小溪, 张向军, 陈平, 田煜, 孟永钢. 微矩形凹槽表面液滴各向异性浸润行为的研究.  , 2020, 69(3): 034702. doi: 10.7498/aps.69.20191429
    [2] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响.  , 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [3] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像.  , 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [4] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响.  , 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [5] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [6] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [7] 赵慧旭, 陈新亮, 杨旭, 杜建, 白立沙, 陈泽, 赵颖, 张晓丹. In2O3:Sn中间层改善B掺杂ZnO薄膜的性能及其应用研究.  , 2014, 63(5): 056801. doi: 10.7498/aps.63.056801
    [8] 赵小龙, 康雪, 陈亮, 张忠兵, 刘金良, 欧阳晓平, 彭文博, 贺永宁. ZnO半导体电导型X射线探测器件研究.  , 2014, 63(9): 098502. doi: 10.7498/aps.63.098502
    [9] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展.  , 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [10] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟.  , 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究.  , 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [12] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能.  , 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [13] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [14] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究.  , 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [15] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究.  , 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [16] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究.  , 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [17] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析.  , 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [18] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管.  , 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [19] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响.  , 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性.  , 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  6089
  • PDF下载量:  3188
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-07-26
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map