搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于海森堡反铁磁链材料LiVGe2O6有限温度相变的理论研究

黄海 李伟锋

引用本文:
Citation:

关于海森堡反铁磁链材料LiVGe2O6有限温度相变的理论研究

黄海, 李伟锋

Analysis of the finite-temperature phase transition of Heisenberg antiferromagnetic compound LiVGe2O6

Huang Hai, Li Wei-Feng
PDF
导出引用
  • 自旋s=1的海森堡反铁磁链材料LiVGe2O6的磁化率以及 核磁共振实验表明该材料在临界温度约为22 K时由顺磁相转变为反铁磁Nel相, 且低温磁激发谱存在能隙. 本文在已有模型哈密顿量的基础上提出了一个低能场论模型Ginzburg-Landau理论来描述 这一反铁磁链材料, 并运用这一理论讨论了LiVGe2O6由于自发对称性破缺导致的有限温度相变及 相应的磁化率变化情况, 理论计算很好地解释了现有的实验结果.
    The susceptibility and nuclear magnetic resonance measurements on quasi-one-dimensional spin-1 Heisenberg antiferromagnet LiVGe2O6 indicate that this material shows a phase transition from paramagnetic state to antiferromagnetic Nel state at about 22 K, and there exists a gap in the low-temperature magnetic excitation spectrum. Based on the model Hamiltonian of LiVGe2O6, we propose a low-energy field theoryGinzburg-Landau theory for this compound. From this theory, we study the finite-temperature phase transition induced by spontaneous symmetry breaking and then calculate the finite-temperature susceptibility of LiVGe2O6. All the theoretical calculations are consistent with the experimental results.
    • 基金项目: 中央高校基本科研业务费专项基金(批准号: 12ZP11,13TD03)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 12ZP11, 13TD03).
    [1]

    Haldane F D M 1983 Phys. Rev. Lett. 50 1153

    [2]

    Haldane F D M 1983 Phys. Lett. 93A 464

    [3]

    Buyers W J L, Morra R M, Armstrong R L, Hogan M J, Gerlach P, Hirakawa K 1986 Phys. Rev. Lett. 56 371

    [4]

    Renard J P, Verdaguer M, Regnault L P, Erkelens W A C, Rossat-Mignod J, Stirling W G 1987 Europhys. Lett. 3 945

    [5]

    Lu W, Shen X, Liu P, von Ortenberg M, Tuchendler J, Renard J P, Zheng F 1995 Chin. Phys. Lett. 12 313

    [6]

    Mutka H, Soubeyroux J L, Bourleaux G, Colombet P 1989 Phys. Rev. B 39 4820

    [7]

    Xu G, DiTusa J F, Ito T, Oka K, Takagi H, Broholm C, Aeppli G 1996 Phys. Rev. B 54 R6827

    [8]

    Kong H Y, Zhang L, Song Y 2006 Acta Phys. Sin. 55 4865 (in Chinese) [孔红艳, 张林, 宋筠 2006 55 4865]

    [9]

    Millet P, Mila F, Zhang F C, Mambrini M, Van Oosten A B, Pashchenko V A, Sulpice A, Stepanov A 1999 Phys. Rev. Lett. 83 4176

    [10]

    Pedrini B, Wessel S, Gavilano J L, Ott H R, Kazakov S M, Karpinski J 2007 Eur. Phys. J. B 55 219

    [11]

    Lumsden M D, Granroth G E, Mandrus D, Nagler S E, Thompson J R, Castellan J P, Gaulin B D 2000 Phys. Rev. B 62 R924

    [12]

    Scalapino D J, Imry Y, Pinkus P 1975 Phys. Rev. B 11 2042

    [13]

    Wang Z G, Ding G H, Xu B W 1999 Acta Phys. Sin. 48 296 (in Chinese) [王治国, 丁国辉, 许伯威 1999 48 296]

    [14]

    Liu H L, Wang Z G, Yang C Q, Huang X S, Shi Y L 2007 Chin. Phys. 16 3858

    [15]

    Wang Q B, Xu X F, Tao Q, Wang H T, Xu Z A 2008 Chin. Phys. B 17 3490

    [16]

    Gavilano J L, Mushkolaj S, Ott H R, Millet P, Mila F 2000 Phys. Rev. Lett. 85 409

    [17]

    Vonlanthen P, Tanaka K B, Goto A, Clark W G, Millet P, Henry J Y, Gavilano J L, Ott H R, Mila F, Berthier C, Horvatic M, Tokunaga Y, Kuhns P, Reyes A P, Moulton W G 2002 Phys. Rev. B 65 214413

    [18]

    Affleck I 1989 J. Phys.: Condens. Matter 1 3047

    [19]

    Takahashi M 1989 Phys. Rev. Lett. 62 2313

    [20]

    Sorensen E S, Affleck I 1994 Phys. Rev. B 49 15771

    [21]

    Sorensen E S, Affleck I 1993 Phys. Rev. Lett. 71 1633

    [22]

    White S R 1992 Phys. Rev. Lett. 69 2863

    [23]

    White S R 1993 Phys. Rev. B 48 10345

    [24]

    White S R, Huse D A 1993 Phys. Rev. B 48 3844

    [25]

    Affleck I 1989 Phys. Rev. Lett. 62 474

    [26]

    Affleck I 1990 Phys. Rev. B 41 6697

    [27]

    Coleman S 1973 Commun. Math. Phys. 31 259

    [28]

    Coleman S 1975 Phys. Rev. D 11 2088

    [29]

    Huang K 1992 Quarks, Leptons and Gauge Fields (2nd Ed.) (Singapore: World Scientific) Chapter 10

    [30]

    Huang H, Affleck I 2004 Phys. Rev. B 69 184414

    [31]

    Lou J, Xiang T, Su Z 2000 Phys. Rev. Lett. 85 2380

  • [1]

    Haldane F D M 1983 Phys. Rev. Lett. 50 1153

    [2]

    Haldane F D M 1983 Phys. Lett. 93A 464

    [3]

    Buyers W J L, Morra R M, Armstrong R L, Hogan M J, Gerlach P, Hirakawa K 1986 Phys. Rev. Lett. 56 371

    [4]

    Renard J P, Verdaguer M, Regnault L P, Erkelens W A C, Rossat-Mignod J, Stirling W G 1987 Europhys. Lett. 3 945

    [5]

    Lu W, Shen X, Liu P, von Ortenberg M, Tuchendler J, Renard J P, Zheng F 1995 Chin. Phys. Lett. 12 313

    [6]

    Mutka H, Soubeyroux J L, Bourleaux G, Colombet P 1989 Phys. Rev. B 39 4820

    [7]

    Xu G, DiTusa J F, Ito T, Oka K, Takagi H, Broholm C, Aeppli G 1996 Phys. Rev. B 54 R6827

    [8]

    Kong H Y, Zhang L, Song Y 2006 Acta Phys. Sin. 55 4865 (in Chinese) [孔红艳, 张林, 宋筠 2006 55 4865]

    [9]

    Millet P, Mila F, Zhang F C, Mambrini M, Van Oosten A B, Pashchenko V A, Sulpice A, Stepanov A 1999 Phys. Rev. Lett. 83 4176

    [10]

    Pedrini B, Wessel S, Gavilano J L, Ott H R, Kazakov S M, Karpinski J 2007 Eur. Phys. J. B 55 219

    [11]

    Lumsden M D, Granroth G E, Mandrus D, Nagler S E, Thompson J R, Castellan J P, Gaulin B D 2000 Phys. Rev. B 62 R924

    [12]

    Scalapino D J, Imry Y, Pinkus P 1975 Phys. Rev. B 11 2042

    [13]

    Wang Z G, Ding G H, Xu B W 1999 Acta Phys. Sin. 48 296 (in Chinese) [王治国, 丁国辉, 许伯威 1999 48 296]

    [14]

    Liu H L, Wang Z G, Yang C Q, Huang X S, Shi Y L 2007 Chin. Phys. 16 3858

    [15]

    Wang Q B, Xu X F, Tao Q, Wang H T, Xu Z A 2008 Chin. Phys. B 17 3490

    [16]

    Gavilano J L, Mushkolaj S, Ott H R, Millet P, Mila F 2000 Phys. Rev. Lett. 85 409

    [17]

    Vonlanthen P, Tanaka K B, Goto A, Clark W G, Millet P, Henry J Y, Gavilano J L, Ott H R, Mila F, Berthier C, Horvatic M, Tokunaga Y, Kuhns P, Reyes A P, Moulton W G 2002 Phys. Rev. B 65 214413

    [18]

    Affleck I 1989 J. Phys.: Condens. Matter 1 3047

    [19]

    Takahashi M 1989 Phys. Rev. Lett. 62 2313

    [20]

    Sorensen E S, Affleck I 1994 Phys. Rev. B 49 15771

    [21]

    Sorensen E S, Affleck I 1993 Phys. Rev. Lett. 71 1633

    [22]

    White S R 1992 Phys. Rev. Lett. 69 2863

    [23]

    White S R 1993 Phys. Rev. B 48 10345

    [24]

    White S R, Huse D A 1993 Phys. Rev. B 48 3844

    [25]

    Affleck I 1989 Phys. Rev. Lett. 62 474

    [26]

    Affleck I 1990 Phys. Rev. B 41 6697

    [27]

    Coleman S 1973 Commun. Math. Phys. 31 259

    [28]

    Coleman S 1975 Phys. Rev. D 11 2088

    [29]

    Huang K 1992 Quarks, Leptons and Gauge Fields (2nd Ed.) (Singapore: World Scientific) Chapter 10

    [30]

    Huang H, Affleck I 2004 Phys. Rev. B 69 184414

    [31]

    Lou J, Xiang T, Su Z 2000 Phys. Rev. Lett. 85 2380

  • [1] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析.  , 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [2] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度.  , 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [3] 陆展鹏, 魏兴波, 刘天帅, 陈阿海, 高先龙. 有限温度下一维Hubbard模型的化学势泛函理论研究.  , 2017, 66(12): 126701. doi: 10.7498/aps.66.126701
    [4] 范竑锐, 袁亚丽, 侯喜文. 用两比特海森伯XY模型研究热几何失协.  , 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [5] 张天宝, 俞玄平, 陈阿海. 有限温度下一维Gaudin-Yang模型的热力学性质.  , 2015, 64(15): 156402. doi: 10.7498/aps.64.156402
    [6] 王辉, 黄志祥, 吴先良, 任信钢, 吴博. 双色散模型的辛时域有限差分算法.  , 2014, 63(7): 070203. doi: 10.7498/aps.63.070203
    [7] 周婷婷, 金宁德, 高忠科, 罗跃斌. 基于有限穿越可视图的时间序列网络模型.  , 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [8] 周宗立, 章国顺, 娄平. 相互作用突然开启后的反铁磁海森伯模型.  , 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [9] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 含遮蔽抛射沉积模型的有限尺寸效应.  , 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [10] 张英丽, 周斌. 具有Dzyaloshinskii-Moriya相互作用的四量子比特海森堡XXZ模型中的热纠缠.  , 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [11] 黄书文, 刘涛, 汪克林. DNA模型的有限格点系的严格对角化解.  , 2010, 59(3): 2033-2037. doi: 10.7498/aps.59.2033
    [12] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠.  , 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [13] 邓 强, 颜 骏. 有限温度下的二维暗能量星模型.  , 2008, 57(7): 3978-3982. doi: 10.7498/aps.57.3978
    [14] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解.  , 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [15] 张 莹, 李爱民, 李子平. 含Hopf项和Maxwell-Chern-Simons项O(3)非线性σ模型的分数自旋和分数统计性质.  , 2005, 54(1): 43-46. doi: 10.7498/aps.54.43
    [16] 谢彦波, 汪秉宏, 全宏俊, 杨伟松, 王卫宁. EZ模型中的有限尺寸效应.  , 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
    [17] 邵元智, 蓝图, 林光明. 混合Heisenberg自旋体系动态相变的滞后标度.  , 2001, 50(5): 948-952. doi: 10.7498/aps.50.948
    [18] 陈锋, 应和平, 徐铁锋, 李文铸. 二维半充满Hubbard模型有限温度下绝缘体──金属相变的研究.  , 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
    [19] 陈仁, 王养璞. S=1/2铁磁理论海森堡模型的随机量子化处理.  , 1989, 38(4): 614-618. doi: 10.7498/aps.38.614
    [20] 杜功焕. 非线性有限束光声效应理论.  , 1988, 37(5): 769-775. doi: 10.7498/aps.37.769
计量
  • 文章访问数:  5220
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-28
  • 修回日期:  2013-08-07
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map