-
通过混合物理化学气相沉积法 (hybrid physical-chemical vapor deposition, HPCVD), 在(000l) SiC 衬底上制得一系列从10 nm到8 μm的MgB2超导膜样品, 并对它们的形貌、超导转变温度Tc 和临界电流密度Jc与膜厚度的关系进行了研究. 观察到Tc随膜厚度增加上升到最大值后, 尽管膜继续增厚, 但Tc值保持近乎平稳, 而Jc则先随膜厚度增加上升到最高值后, 继而则随膜的厚度的增加而下降. MgB2膜的Tc(0)和Tc(onset)值与膜厚的关系基本一致, Tc(0)在膜厚为230 nm处达到最大值Tc(0)=41.4 K, 而Jc(5K,0T)在膜厚为100 nm时达到最大值, Jc (5 K, 0 T)=2.3×108A·cm-2, 这也说明了我们能用HPCVD方法制备出高质量干净MgB2超导膜. 本文研究的超导膜厚度变化跨度非常大, 从10 nm级的超薄膜到100 nm级的薄膜, 再到几微米的厚膜, 如此Tc和Jc对膜厚度变化的依赖就有了较完整、成体系的研究. 并且本文的工作对MgB2超导薄膜制备的厚度选取具有实际应用意义.
-
关键词:
- MgB2超导膜 /
- 混合物理化学气相沉积法 /
- 厚度 /
- 临界电流密度
MgB2 superconducting films with a thickness of 10 nm to 8 μ have been prepared on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD). The study on Tc and Jc shows that as the film grows thicker, Tc increases and then keeps stable, which Jc increases at first, and then drops dramatically. We get the maximum Tc at 41.4 K and Jc at 2.3× 108 A·cm-2. This also shows that we can use the method of HPCVD to prepare high-quality of clean MgB2 film. And its thickness can be from 10nm ultrathin films and 100 nm thin films up to 8 μm thick film. It is the first time so far as we know that Tc and Jc are studied in this range of thickness. This will lead to a complete and systematical understanding of the superconducting MgB2 films. And it is also important and practical to choose the thickness when preparing MgB2 films.-
Keywords:
- MgB2 superconducting film /
- hybrid physical-chemical vapor deposition /
- thickness /
- critical current density
[1] Zeng X H, Pogrebnyakov A J, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 1
[2] Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jing Y, Wen H H, Xi X X 2009 Journal of Applied Physics 104 013924
[3] Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2007 Physica C 452 6
[4] Li F, Guo T, Zhang K C, Chen L P, Chen C P, Feng R 2006 Supercond. Sci. Technol.19 1196
[5] Zhuang C G, Yao D, Li F, Zhang K C, Feng Q R, Gan Z Z 2007 Supercond. Sci. Technol. 20 287
[6] He F, Xie D T, Feng Q R, Liu K X 2012 Supercond. Sci. Technol. 25 065003
[7] Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2006 Front.Phys.China. 4 446
[8] Zhang K C, Ding L L, Zhuang C G, Chen L P, Chen C P, Feng Q R 2006 Phys. Stat Sol. A 203 2463
[9] Zhang C, Wang D, Zhang Y, Wang Y, Feng Q R, Gan Z Z 2013 IEEE Transactions on Applied Superconductivity 237500204
[10] Mina Hanna, Shufang Wang, Joan M Redwing, Xi X X, Kamel Salama 2009 Supercond. Sci. Technol. 22 015024
[11] Wang S F, Liu Z, Zhou Y L, Zhu Y B, Chen Z H, Lu H B,Cheng B L, Yang G Z 2004 Supercond. Sci. Technol. 17 1126
[12] Yakinci Z D, Aydogdu Y 2011 J. Supercond. Nov Magn. 24 523
[13] Chandra Shekhar, Srivastava O N 2011 Physica C 471 104
[14] Wang Y Z, Zhuang C G, Sun X A, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015
[15] Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X, Xu S Y, Wertz E, Li Q 2003 Appl. Phys. Lett 82 2097
[16] Jung S G, Seong W K, Kang W N 2012 Journal of Applied Physics 111 053906
[17] Wang Y B, Meng S, Dai Q, Yan Zhang, Feng O R 2012 Advanced Materials Research 567 153
[18] Xi X X, Pogrebnyakov A V, Zeng X H, Redwing J M, Xu S Y, Li Q, Liu Z K, Lettieri J, Vaithyanathan V, Schlom D G, Christen H M,Y Zhai H, Goyal A 2004 Supercond. Sci. Technol. 17 S196
[19] Bean C P 1962 Phys Rev. 8 250
[20] Wang Y B, Xue C, Feng Q R 2012 Acta. Phys. Sin. 61 197401 (in Chinese) [王银博, 薛驰, 冯庆荣 2012 61 197401]
[21] Feng Q R, Chen C P, Xu J, Kong L W, Chen X, Wang Y Z, Zhang Y, Gao Z X 2004 Physica C-superconductivity and its applications 411 41
[22] Yan S C, Yan G, Liu C F, Lu Y F, Zhou L J 2007 Alloys Comp. 437 298
[23] Zhuang C G, Tan T, Wang Y, Bai S S, Ma X B, Yang H, Zhang G H, He Y S, Wen H H, Xi X X, Feng Q R, Gan Z Z 2008 Supercond. Sci. Technol. 22 025002
[24] Pan J Y, Zhang C, HeE F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 62 127401]
[25] Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta. Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 60 087401]
[26] Wang Z D, Chen Z J, Duan Z Z, Wang W Q 2011 Chinese Phys. Lett. 18 677
[27] Cao G Z, Wang Y 2012 Nanostructures and Nanomaterials-Synthesis Properties, and Applications 2nd Edition (Higher Education Press) p318 (in Chinese) [曹国忠, 王颖著, 董星龙译 2012 纳米结构和纳米材料合成、性质及应用 (北京: 高等教育出版社) 第318页]
[28] Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125
-
[1] Zeng X H, Pogrebnyakov A J, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 1
[2] Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jing Y, Wen H H, Xi X X 2009 Journal of Applied Physics 104 013924
[3] Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2007 Physica C 452 6
[4] Li F, Guo T, Zhang K C, Chen L P, Chen C P, Feng R 2006 Supercond. Sci. Technol.19 1196
[5] Zhuang C G, Yao D, Li F, Zhang K C, Feng Q R, Gan Z Z 2007 Supercond. Sci. Technol. 20 287
[6] He F, Xie D T, Feng Q R, Liu K X 2012 Supercond. Sci. Technol. 25 065003
[7] Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2006 Front.Phys.China. 4 446
[8] Zhang K C, Ding L L, Zhuang C G, Chen L P, Chen C P, Feng Q R 2006 Phys. Stat Sol. A 203 2463
[9] Zhang C, Wang D, Zhang Y, Wang Y, Feng Q R, Gan Z Z 2013 IEEE Transactions on Applied Superconductivity 237500204
[10] Mina Hanna, Shufang Wang, Joan M Redwing, Xi X X, Kamel Salama 2009 Supercond. Sci. Technol. 22 015024
[11] Wang S F, Liu Z, Zhou Y L, Zhu Y B, Chen Z H, Lu H B,Cheng B L, Yang G Z 2004 Supercond. Sci. Technol. 17 1126
[12] Yakinci Z D, Aydogdu Y 2011 J. Supercond. Nov Magn. 24 523
[13] Chandra Shekhar, Srivastava O N 2011 Physica C 471 104
[14] Wang Y Z, Zhuang C G, Sun X A, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015
[15] Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X, Xu S Y, Wertz E, Li Q 2003 Appl. Phys. Lett 82 2097
[16] Jung S G, Seong W K, Kang W N 2012 Journal of Applied Physics 111 053906
[17] Wang Y B, Meng S, Dai Q, Yan Zhang, Feng O R 2012 Advanced Materials Research 567 153
[18] Xi X X, Pogrebnyakov A V, Zeng X H, Redwing J M, Xu S Y, Li Q, Liu Z K, Lettieri J, Vaithyanathan V, Schlom D G, Christen H M,Y Zhai H, Goyal A 2004 Supercond. Sci. Technol. 17 S196
[19] Bean C P 1962 Phys Rev. 8 250
[20] Wang Y B, Xue C, Feng Q R 2012 Acta. Phys. Sin. 61 197401 (in Chinese) [王银博, 薛驰, 冯庆荣 2012 61 197401]
[21] Feng Q R, Chen C P, Xu J, Kong L W, Chen X, Wang Y Z, Zhang Y, Gao Z X 2004 Physica C-superconductivity and its applications 411 41
[22] Yan S C, Yan G, Liu C F, Lu Y F, Zhou L J 2007 Alloys Comp. 437 298
[23] Zhuang C G, Tan T, Wang Y, Bai S S, Ma X B, Yang H, Zhang G H, He Y S, Wen H H, Xi X X, Feng Q R, Gan Z Z 2008 Supercond. Sci. Technol. 22 025002
[24] Pan J Y, Zhang C, HeE F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 62 127401]
[25] Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta. Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 60 087401]
[26] Wang Z D, Chen Z J, Duan Z Z, Wang W Q 2011 Chinese Phys. Lett. 18 677
[27] Cao G Z, Wang Y 2012 Nanostructures and Nanomaterials-Synthesis Properties, and Applications 2nd Edition (Higher Education Press) p318 (in Chinese) [曹国忠, 王颖著, 董星龙译 2012 纳米结构和纳米材料合成、性质及应用 (北京: 高等教育出版社) 第318页]
[28] Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125
计量
- 文章访问数: 6717
- PDF下载量: 551
- 被引次数: 0