搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锌锡作为电子传输层的量子点发光二极管

刘博智 黎瑞锋 宋凌云 胡炼 张兵坡 陈勇跃 吴剑钟 毕刚 王淼 吴惠桢

引用本文:
Citation:

氧化锌锡作为电子传输层的量子点发光二极管

刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢

QD-LED devices using ZnSnO as an electron-transporting layer

Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen
PDF
导出引用
  • 本文研究了以胶状量子点作为发光层和有机/无机混合材料作 为电子-空穴传输层的电致发光二极管器件. CdSe 量子点以薄膜的形式夹在无机氧化锌锡电子传输层和有机TPD空穴传输层中间构成三明治结构. 氧化锌锡电子传输层采用磁控溅射实现, 有机TPD空穴传输层和量子点发光层则采用旋涂的方法制备, 得到的QD-LEDs器件结构界面陡峭、表面平整. 光电特性表征结果显示器件的电致发光具有良好的单色性、低的开启电压, 利 用具有高电子迁移率和低载流子浓度的无机氧化锌锡薄膜作为电子传输层可 以实现器件在大气环境下稳定、明亮的电致发光. 本文分析了器件的工作机理并通过改变氧化锌锡的电导率达到控制器件中电子和空穴的注入比的目的, 优化了器件的光电性能.
    We have investigated the light-emitting diodes based on colloidal CdSe quantum dots (QD-LEDs), in which inorganic ZnSnO thin films and organic TPD thin films were used as the electron-transporting layer (ETL) and hole-transporting layer (HTL), respectively. The quantum dots were embedded between the inorganic ETL and organic HTL to form a sandwich structure. ZnSnO ETL was made by magnetron sputtering, while the TPD and QD films were made by spin-coating method. The QD-LEDs display sharp interface and smooth morphology. Optical and electrical characterizations show that QD-LEDs have low turn-on voltage, good monochromaticity, bright electroluminescence and good stability in atmosphere ambient. These characteristics are attributed to the utility of high electron mobility and low carrier concentration of the ZnSnO films used as the ETL. To investigate the devices operation mechanism, the conductivity of ZnSnO was varied during deposition to realize equal injection rate for both electrons and holes, which allows the device to operate optimally.
    • 基金项目: 国家自然科学基金 (批准号: 91021020, 61275108)和浙江省自然科学基金 (批准号: Z610017, Z1110057)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91021020, 61275108), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z610017, Z1110057)
    [1]

    Achermann M, Petruska M A, Koleske D D, Crawford M H, Klimov V I 2006 Nano Lett. 6 1396

    [2]

    Kumar B, Hue R, Gladfelter W L, Campbell S A 2012 Journal of Applied Physics 112 034501

    [3]

    Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354

    [4]

    Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H, Li Y F 2007 Nat. Photon 1 717

    [5]

    Caruge J M, Halpert J E, Wood V, Bulovi V, Bawendi M G 2008 Nat. Photon 2 247

    [6]

    Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Yoon D Y, Char K, Lee S, Lee C 2012 Nano Lett. 12 2362

    [7]

    Wang X, Cai X K, Yuan Z J, ZHU X M, Qiu D J, Wu H Z Acta Phys. Sin 60 37305 (in Chinese) [王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢 2011 60 37305]

    [8]

    Hu L, Wu H Z, Cai C F, Xu T N, Zhang B P, Jin S Q, Wan Z F, Wei X D 2012 The Journal of Physical Chemistry C 116 11283

    [9]

    Chen D A, Shen L, Zhang J Y, Cui Y P 2007 Acta Phys. Sin. 56 6340 (in Chinese) [陈定安, 沈里, 张家雨, 崔一平 2007 56 6340]

    [10]

    Du L X, Hu L, Zhang B P, Cai X K, Lou T G, Wu H Z 2011 Acta Phys. Sin. 60 117803 (in Chinese) [杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢 2011 60 117803]

    [11]

    Lou T G, Hu L, Wu D K, Du L X, Cai C F, Si J X, Wu H Z 2012 J Inorg Mater 27 1211 (in Chinese) [楼腾刚, 胡炼, 杜凌霄, 蔡春锋, 斯剑宵, 吴惠桢 2012 无机材料学报 27 1211]

    [12]

    Empedocles S A, Bawendi M G 1997 Science 278 2114

    [13]

    Hikmet R A M, Talapin D V, Weller H 2003 Journal of Applied Physics 93 3509

    [14]

    Chin P T K, Hikmet R A M, Janssen R A J 2008 Journal of Applied Physics 104 013108

    [15]

    Coe-Sullivan S, Woo W K, Steckel J S, Bawendi M, Bulović V 2003 Organic Electronics 4 123

    [16]

    Anikeeva P O, Madigan C F, Halpert J E, Bawendi M G, Bulović V 2008 Phys. Rev. B 78 085434

    [17]

    Coe S, Woo W K, Bawendi M, Bulovic V 2002 Nature 420 800

    [18]

    Anikeeva P O, Halpert J E, Bawendi M G, Bulović V 2009 Nano Lett. 9 2532

    [19]

    Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L, Kim J M 2009 Nat Photon 3 341

    [20]

    Ginger D S, Greenham N C 2000 Journal of Applied Physics 87 1361

    [21]

    Wehrenberg B L, Guyot-Sionnest P 2003 Journal of the American Chemical Society 125 7806

    [22]

    Shaheen S E, Kippelen B, Peyghambarian N, Wang J F, Anderson J D, Mash E A, Lee P A, Armstrong N R, Kawabe Y 1999 Journal of Applied Physics 85 7939

    [23]

    Huang H, Dorn A, Nair G P, Bulovi V, Bawendi M G 2007 Nano Lett. 7 3781

    [24]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [25]

    Mei J, Bradley M S, Bulovi V 2009 Phys. Rev. B 79 235205

    [26]

    Wood V, Panzer M J, Halpert J E, Caruge J M, Bawendi M G, Bulović V 2009 ACS Nano 3 3581

  • [1]

    Achermann M, Petruska M A, Koleske D D, Crawford M H, Klimov V I 2006 Nano Lett. 6 1396

    [2]

    Kumar B, Hue R, Gladfelter W L, Campbell S A 2012 Journal of Applied Physics 112 034501

    [3]

    Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354

    [4]

    Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H, Li Y F 2007 Nat. Photon 1 717

    [5]

    Caruge J M, Halpert J E, Wood V, Bulovi V, Bawendi M G 2008 Nat. Photon 2 247

    [6]

    Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Yoon D Y, Char K, Lee S, Lee C 2012 Nano Lett. 12 2362

    [7]

    Wang X, Cai X K, Yuan Z J, ZHU X M, Qiu D J, Wu H Z Acta Phys. Sin 60 37305 (in Chinese) [王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢 2011 60 37305]

    [8]

    Hu L, Wu H Z, Cai C F, Xu T N, Zhang B P, Jin S Q, Wan Z F, Wei X D 2012 The Journal of Physical Chemistry C 116 11283

    [9]

    Chen D A, Shen L, Zhang J Y, Cui Y P 2007 Acta Phys. Sin. 56 6340 (in Chinese) [陈定安, 沈里, 张家雨, 崔一平 2007 56 6340]

    [10]

    Du L X, Hu L, Zhang B P, Cai X K, Lou T G, Wu H Z 2011 Acta Phys. Sin. 60 117803 (in Chinese) [杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢 2011 60 117803]

    [11]

    Lou T G, Hu L, Wu D K, Du L X, Cai C F, Si J X, Wu H Z 2012 J Inorg Mater 27 1211 (in Chinese) [楼腾刚, 胡炼, 杜凌霄, 蔡春锋, 斯剑宵, 吴惠桢 2012 无机材料学报 27 1211]

    [12]

    Empedocles S A, Bawendi M G 1997 Science 278 2114

    [13]

    Hikmet R A M, Talapin D V, Weller H 2003 Journal of Applied Physics 93 3509

    [14]

    Chin P T K, Hikmet R A M, Janssen R A J 2008 Journal of Applied Physics 104 013108

    [15]

    Coe-Sullivan S, Woo W K, Steckel J S, Bawendi M, Bulović V 2003 Organic Electronics 4 123

    [16]

    Anikeeva P O, Madigan C F, Halpert J E, Bawendi M G, Bulović V 2008 Phys. Rev. B 78 085434

    [17]

    Coe S, Woo W K, Bawendi M, Bulovic V 2002 Nature 420 800

    [18]

    Anikeeva P O, Halpert J E, Bawendi M G, Bulović V 2009 Nano Lett. 9 2532

    [19]

    Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L, Kim J M 2009 Nat Photon 3 341

    [20]

    Ginger D S, Greenham N C 2000 Journal of Applied Physics 87 1361

    [21]

    Wehrenberg B L, Guyot-Sionnest P 2003 Journal of the American Chemical Society 125 7806

    [22]

    Shaheen S E, Kippelen B, Peyghambarian N, Wang J F, Anderson J D, Mash E A, Lee P A, Armstrong N R, Kawabe Y 1999 Journal of Applied Physics 85 7939

    [23]

    Huang H, Dorn A, Nair G P, Bulovi V, Bawendi M G 2007 Nano Lett. 7 3781

    [24]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [25]

    Mei J, Bradley M S, Bulovi V 2009 Phys. Rev. B 79 235205

    [26]

    Wood V, Panzer M J, Halpert J E, Caruge J M, Bawendi M G, Bulović V 2009 ACS Nano 3 3581

  • [1] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输.  , 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [2] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨.  , 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [3] 朱伟君, 陈金鑫, 高宇晗, 杨德仁, 马向阳. 硅基掺铒二氧化钛薄膜发光器件的电致发光: 共掺镱的增强发光作用.  , 2019, 68(12): 124204. doi: 10.7498/aps.68.20190300
    [4] 孙立志, 赵谡玲, 徐征, 尹慧丽, 张成文, 龙志娟, 洪晓霞, 王鹏, 徐叙瑢. 基于量子点和MEH-PPV的白光发光二极管的研究.  , 2016, 65(6): 067301. doi: 10.7498/aps.65.067301
    [5] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [6] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究.  , 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [7] 高松, 赵谡玲, 徐征, 杨一帆, 刘志民, 谢小漪. 氧化锌纳米颗粒薄膜的近紫外电致发光特性研究.  , 2014, 63(15): 157702. doi: 10.7498/aps.63.157702
    [8] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究.  , 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [9] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究.  , 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [10] 冯昊, 俞重远, 刘玉敏, 芦鹏飞, 贾博雍, 姚文杰, 田宏达, 赵伟, 徐子欢. 应变补偿层对量子点生长影响的理论研究.  , 2010, 59(2): 765-770. doi: 10.7498/aps.59.765
    [11] 刘静, 郑卫民, 宋迎新, 初宁宁, 李素梅, 丛伟艳. 量子限制受主远红外电致发光器件的制备与测量.  , 2010, 59(4): 2728-2733. doi: 10.7498/aps.59.2728
    [12] 朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟. 量子阱结构对有机电致发光器件效率的影响.  , 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [13] 孔 超, 徐 征, 赵谡玲, 张福俊, 黄金英, 闫 光, 厉军明. Si3N4做电子加速层的聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑]固态阴极射线发光.  , 2008, 57(12): 7891-7895. doi: 10.7498/aps.57.7891
    [14] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究.  , 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [15] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [16] 李 远, 赵谡玲, 徐 征, 张福俊, 黄金昭, 宋 林, 欧阳平. 提高电子注入的固态阴极射线发光的研究.  , 2007, 56(9): 5526-5530. doi: 10.7498/aps.56.5526
    [17] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管.  , 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [18] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究.  , 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [19] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究.  , 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [20] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点.  , 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
计量
  • 文章访问数:  8907
  • PDF下载量:  1256
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-30
  • 修回日期:  2013-05-16
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map