搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优估计理论、联合星载主被动传感器资料的液态云微物理特性反演研究

韩丁 严卫 蔡丹 杨汉乐

引用本文:
Citation:

基于最优估计理论、联合星载主被动传感器资料的液态云微物理特性反演研究

韩丁, 严卫, 蔡丹, 杨汉乐

Retrieval of liquid cloud microphysical properties from spaceborne active and passive sensor data based on optimal estimation theory

Han Ding, Yan Wei, Cai Dan, Yang Han-Le
PDF
导出引用
  • 针对液态云微物理特性精确反演的迫切需求, 综合主被动传感器的探测优势, 联合CloudSat雷达反射率和Aqua光学厚度资料, 提出基于最优估计理论的液态云微物理参数反演算法.通过假设粒子谱服从对数正态分布, 基于前向物理模式建立测量变量与反演变量的函数关系, 借助谱分布参数的先验信息、通过算法迭代得到谱参数的最优解, 进而利用前向物理模式反演液态云微物理参数, 并根据误差传递理论计算反演不确定度.通过设计反演方案, 基于实测个例数据并与CloudSat官方发布产品和经验算法反演结果对比验证.结果表明: 基于最优估计理论、联合主被动传感器资料的液态云微物理参数反演结果与官方发布产品一致性较好, 弥补了经验算法误差大、扩展性差的不足, 对于开展国内星载和机载W波段毫米波雷达液态云微物理参数反演研究具有重要的借鉴意义.
    In order to meet the urgent requirement for accurate retrieval of liquid cloud microphysical properties, integrating the detecting advantages of active and passive sensors and combining radar reflectivity and optical depth information from CloudSat and Aqua, a new retrieval algorithm of liquid cloud microphysical parameters is proposed according to the optimal estimation theory. By assuming the lognormal size distribution of cloud droplets and establishing functional relationships between measurement and retrieval variables based on forward physical model, with the prior information about spectral distribution parameters, the optimal solutions of spectral parameters are obtained after iteratively calculating, then the microphysical parameters of liquid cloud could be retrieved based on forward physical model, and the uncertainty can be calculated according to error propagation theory. By designing retrieval scheme and using measured case data, the retrieval results are compared with the data published by CloudSat official institutions and those retrieved using empirical algorithms, showing that retrievals of liqiud cloud microphysical parameters based on optimal estimation theory by using combined active and passive sensor data are well consistent with official released data, which makes up for the disadvantages of empirical algorithms that have large error and poor expansibility and gives some important references for retrieval research of liquid cloud microphysical parameters based on domestic spaceborne and airborne W-band millimeter-wave radar data.
    • 基金项目: 国家自然科学基金(批准号: 41076118)和国家自然科学基金青年科学基金(批准号: 41005018)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41076118) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41005018).
    [1]

    Cui X P, Li X F 2011 Chin. Phys. B 20 109201

    [2]

    Stephen G L 2005 J. Climate 18 237

    [3]

    Cheng T H, Gu X F, Chen L F, Yu T, Tian G L 2008 Acta Phys. Sin. 57 5323 (in Chinese) [程天海, 顾行发, 陈良富, 余涛, 田国良 2008 57 5323]

    [4]

    Xie X N, Liu X D 2010 Chin. Phys. B 19 109201

    [5]

    Wang K, Feng G L, Sun S P, Zheng Z H 2012 Acta Phys. Sin. 61 109201 (in Chinese) [王阔, 封国林, 孙树鹏, 郑志海 2012 61 109201]

    [6]

    Atlas D 1954 J. Meteor. 11 309

    [7]

    Sauvageot H, Omar J 1987 J. Atmos. Oceanic Technol. 4 264

    [8]

    Sassen K, Liao L 1996 J. Appl. Meteor. 35 932

    [9]

    Fox N I, Illingworth A J 1997 J. Appl. Meteor. 36 485

    [10]

    Baedi R J P, de Wit J J M, Russchenberg H W J, Erkelens J S, Poiares Baptista J P V 2000 Phys. Chem. Earth B 25 1057

    [11]

    Krasnov O A, Russchenberg H W J 2002 Proceedings of the 11th Conference on Cloud Physics Ogden, USA, June 2-7, 2002 p218

    [12]

    Shupe M D, Uttal T, Matrosov S Y 2005 J. Appl. Meteor. 44 1544

    [13]

    Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practice (River Edge: World Scientific Publishing Co., Inc.) pp81-99

    [14]

    Hansen J E 1971 J. Atmos. Sci. 28 1400

    [15]

    Nakajima T, King M D 1990 J. Atmos. Sci. 47 1878

    [16]

    Miles N L, Verlinde J, Clothiaux E E 2000 J. Atmos. Sci. 57 295

    [17]

    Austin R T, Stephens G L 2001 J. Geophys. Res. 106 28233

    [18]

    van de Hulst H C 1957 Light Scattering by Small Particles (New York: John Wiley & Sons, Inc.) pp63-81

    [19]

    Marks C J, Rodgers C D 1993 J. Geophys. Res. 98 14939

    [20]

    Rodgers C D 1990 J. Geophys. Res. 95 5587

    [21]

    Krasnov O A, Russchenberg H W J 2005 Proceedings of the 32nd Conference on Radar Meteorology Albuquerque, USA, October 22-29, 2005 p117

    [22]

    Yan W, Ren J Q, Lu W, Wu X 2011 J. Infrared Millim. Waves 30 158 (in Chinese) [严卫, 任建奇, 陆文, 吴限 2011 红外与毫米波学报 30 158]

  • [1]

    Cui X P, Li X F 2011 Chin. Phys. B 20 109201

    [2]

    Stephen G L 2005 J. Climate 18 237

    [3]

    Cheng T H, Gu X F, Chen L F, Yu T, Tian G L 2008 Acta Phys. Sin. 57 5323 (in Chinese) [程天海, 顾行发, 陈良富, 余涛, 田国良 2008 57 5323]

    [4]

    Xie X N, Liu X D 2010 Chin. Phys. B 19 109201

    [5]

    Wang K, Feng G L, Sun S P, Zheng Z H 2012 Acta Phys. Sin. 61 109201 (in Chinese) [王阔, 封国林, 孙树鹏, 郑志海 2012 61 109201]

    [6]

    Atlas D 1954 J. Meteor. 11 309

    [7]

    Sauvageot H, Omar J 1987 J. Atmos. Oceanic Technol. 4 264

    [8]

    Sassen K, Liao L 1996 J. Appl. Meteor. 35 932

    [9]

    Fox N I, Illingworth A J 1997 J. Appl. Meteor. 36 485

    [10]

    Baedi R J P, de Wit J J M, Russchenberg H W J, Erkelens J S, Poiares Baptista J P V 2000 Phys. Chem. Earth B 25 1057

    [11]

    Krasnov O A, Russchenberg H W J 2002 Proceedings of the 11th Conference on Cloud Physics Ogden, USA, June 2-7, 2002 p218

    [12]

    Shupe M D, Uttal T, Matrosov S Y 2005 J. Appl. Meteor. 44 1544

    [13]

    Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practice (River Edge: World Scientific Publishing Co., Inc.) pp81-99

    [14]

    Hansen J E 1971 J. Atmos. Sci. 28 1400

    [15]

    Nakajima T, King M D 1990 J. Atmos. Sci. 47 1878

    [16]

    Miles N L, Verlinde J, Clothiaux E E 2000 J. Atmos. Sci. 57 295

    [17]

    Austin R T, Stephens G L 2001 J. Geophys. Res. 106 28233

    [18]

    van de Hulst H C 1957 Light Scattering by Small Particles (New York: John Wiley & Sons, Inc.) pp63-81

    [19]

    Marks C J, Rodgers C D 1993 J. Geophys. Res. 98 14939

    [20]

    Rodgers C D 1990 J. Geophys. Res. 95 5587

    [21]

    Krasnov O A, Russchenberg H W J 2005 Proceedings of the 32nd Conference on Radar Meteorology Albuquerque, USA, October 22-29, 2005 p117

    [22]

    Yan W, Ren J Q, Lu W, Wu X 2011 J. Infrared Millim. Waves 30 158 (in Chinese) [严卫, 任建奇, 陆文, 吴限 2011 红外与毫米波学报 30 158]

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法.  , 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] 陈克乐, 周家辉, 韩文雨, 饶学军, 郭友明, 饶长辉. 自适应光学系统最优模式增益的快速估计方法.  , 2023, 72(13): 139502. doi: 10.7498/aps.72.20230290
    [3] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [4] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2021, (): . doi: 10.7498/aps.70.20211504
    [5] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计.  , 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [6] 郑逢勋, 侯伟真, 李正强. 高分五号卫星多角度偏振相机最优化估计反演: 角度依赖与后验误差分析.  , 2019, 68(4): 040701. doi: 10.7498/aps.68.20181682
    [7] 周睿, 魏凌, 李新阳, 王彩霞, 李梅, 沈锋. 点光源哈特曼最优阈值估计方法研究.  , 2017, 66(9): 090701. doi: 10.7498/aps.66.090701
    [8] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法.  , 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [9] 杨成, 周昕. 液态水中的多种局域结构.  , 2016, 65(17): 176501. doi: 10.7498/aps.65.176501
    [10] 方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏. 一种基于最优频段的X射线脉冲星累积轮廓时延估计方法.  , 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [11] 陈坤, 陈树新, 吴德伟, 杨春燕, 王希, 李响, 吴昊, 刘卓崴. 相干态和压缩真空态的自适应最优估计方法.  , 2016, 65(19): 194203. doi: 10.7498/aps.65.194203
    [12] 黎勇, 钭斐玲, 樊瑛, 狄增如. 二维有限能量约束下最优导航问题的理论分析.  , 2012, 61(22): 228902. doi: 10.7498/aps.61.228902
    [13] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型.  , 2012, 61(18): 186106. doi: 10.7498/aps.61.186106
    [14] 郭风祥, 吕婷, 贾燕, 田学雷. 液态铅的电阻率计算.  , 2011, 60(7): 077204. doi: 10.7498/aps.60.077204
    [15] 龙智勇, 石汉青, 黄思训. 利用卫星云图反演云导风的新思路.  , 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [16] 杨杰, 王启光, 支蓉, 封国林. 动态最优多因子组合的华北汛期降水模式误差估计及预报.  , 2011, 60(2): 029204. doi: 10.7498/aps.60.029204
    [17] 王殿海, 景 超, 姚荣涵. 居民出行分布中的电子云现象.  , 2007, 56(7): 3642-3648. doi: 10.7498/aps.56.3642
    [18] 孙贤明, 韩一平. 冰水混合云对可见光的吸收和散射特性.  , 2006, 55(2): 682-687. doi: 10.7498/aps.55.682
    [19] 刘义保, 庞文宁, 丁海兵, 尚仁成. 电子-光子符合散射实验中受激原子态电荷云分布的研究.  , 2005, 54(8): 3554-3558. doi: 10.7498/aps.54.3554
    [20] 郭海明, 刘虹雯, 王业亮, 谢惠民, 戴福隆, 高鸿钧. 扫描探针显微学中的云纹方法.  , 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
计量
  • 文章访问数:  6243
  • PDF下载量:  1610
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-03-21
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map