搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体合成射流能量效率及工作特性研究

王林 罗振兵 夏智勋 刘冰

引用本文:
Citation:

等离子体合成射流能量效率及工作特性研究

王林, 罗振兵, 夏智勋, 刘冰

Energy efficiency and performance characteristics of plasma synthetic jet

Wang Lin, Luo Zhen-Bing, Xia Zhi-Xun, Liu Bing
PDF
导出引用
  • 基于等离子体激励器工作过程中气体放电的焦耳加热作用, 并结合局部热力学平衡等离子体物理假设, 开展了等离子体合成射流三维唯象数值研究, 获得了完整工作周期内等离子体合成射流流场发展演变过程. 研究结果表明, 单次能量沉积建立的自维持周期性射流中存在有实现激励器腔体"充分" 回填的最大脉冲工作频率––饱和频率. 大的能量沉积、小的激励器出口直径和相同腔体体积下大的径高比都可以产生速度更高的射流, 而射流速度的提高会伴随有饱和频率的降低. 一个饱和周期内, 最多约有16%的初始腔内气体喷出, 吸气复原仅能实现初始腔体质量90%左右的回填.一个大气压条件下, 容性电源供能的等离子体合成射流激励器电能向气体热能和射流动能的转化效率分别约为5%和1.6%.
    Based on the Joule heating effect of gas discharge in the working process of the plasma actuator, the plasma synthetic jet is simulated with a three-dimensional phenomenological model, under the assumption of local thermodynamic equilibrium plasma.The flow field evolution process of the plasma synthetic jet during a whole cycle is obtained. The results show that in the self-sustained periodical jet built by a single energy deposition, there is a maxium pulse frequency–saturated frequency which could relaize that the cavity is recovered sufficiently. Large energy deposition, small exit orifice diameter and high diameter-height ratio with the same cavity volume could induce higher speed jet, and the increase of the jet speed occurs concurrently with the decrease of the saturated frequency. During a saturated cycle, up to 16% of the mass in the cacity is expelled, but the recovery can only achieve about 90% of the initial mass in the cavity. Plasma synthetic jet actuator is supplied by a capacitive power supply at atmospheric pressure, the fractions of power that go into gas heating and jet kinetic energy are 5% and 1.6% respectively.
    • 基金项目: 国家自然科学基金(批准号: 11002161)、全国优秀博士论文作者专项基金(批准号: 201058)和高等学校博士学科点专项科研基金(批准号: 20104307110007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11002161), the Foundation for the Author of National Excellent Doctor Dissertation of China (Grant No. 201058), and the Specialized Research Fund for the Doctor Program of Higher Education of China (Grant No. 20104307110007).
    [1]

    Corke T C, Enloe C L, Wilkinson S P 2010 Annu. Rev. Fluid Mech. 42 505

    [2]

    Leonov S, Yarantsev D 2008 J. Propul. Power 24 1168

    [3]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 J. Phys. D: Appl. Phys. 42 165503

    [4]

    Grossman K R, Cybyk B Z, van Wie D M 2003 41st Aerospace Science Meeting and Exhibit Reno Nevada, USA, January 6-9, 2003

    [5]

    Roth J 2003 Phys. Plasmas 42 165503

    [6]

    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605

    [7]

    Zhang P F, Wang J J, Feng L H, Wang G B 2010 AIAA J. 48 249

    [8]

    Li Y H, Wu Y, Liang H, Song H M, Jia M 2010 Chin. Sci. Bull. 55 3060 (in Chinese) [李应红, 吴云, 梁华, 宋慧敏, 贾敏 2010 科学通报 55 3060]

    [9]

    Li G, Li Y M, Xu Y J, Zhang Y, Li H M, Nie C Q, Zhu J Q 2009 Acta Phys. Sin. 58 4026 (in Chinese) [李刚, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强 2009 58 4026]

    [10]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 Acta Phys. Sin. 58 55113 (in Chinese) [王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云 2009 58 5513]

    [11]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060510 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 61 060510]

    [12]

    Narayanaswamy V, Raia L L, Clemens N T 2010 AIAA J. 48 297

    [13]

    Haack S, Taylor T, Emhoif J, Cybyk B 2010 5th Flow Control Conference Chicago Illinois, USA, June 28-July 1, 2010

    [14]

    Ko H S, Haack S J, Land H B, Cybyk B, Katz J, Kim H J 2010 Flow Meas. Instrum. 21 443

    [15]

    Cybyk B Z, Wilkerson J T, Grossman K R 2004 2nd AIAA Flow Control Conference Portland Oregon, USA, June 28-July 1, 2004

    [16]

    Narayanaswamy V, Raja L L, Clemens N T 2012 AIAA J. 50 246

    [17]

    Anderson K, Knight D D 2012 AIAA J. 50 1855

    [18]

    Caruana D, Barricau P, Hardy P, Cambronne J P, Belinger A 2009 47th AIAA Aerospace Sciences Meeting Inculding the New Horizons Forum and Aerospace Exposition Orlando Florida, USA, January 5-8, 2009

    [19]

    Belinger A, Hardy P, Gherardi N, Naudé N, Cambronne J P, Caruana D 2011 IEEE Trans. Plasma. Sci. 39 2334

    [20]

    Belinger A, Hardy P, Barricau P, Cambronne J P, Caruana D 2011 J. Phys. D: Appl. Phys. 44 365201

    [21]

    Shin J 2010 Chin. J. Aeronaut. 23 518

    [22]

    Shan Y, Zhang J Z, Tan X M 2011 J. Aero. Power 26 551 (in Chinese) [单勇, 张靖周, 谭晓茗 2011 航空动力学报 26 551]

    [23]

    Jia M, Liang H, Song H M, Liu P C, Wu Y 2011 High Voltage Engin. 37 1493 (in Chinese) [贾敏, 梁华, 宋慧敏, 刘朋冲, 吴云 2011 高电压技术 37 1493]

    [24]

    Liu P C, Li J, Jia M, Wen B 2011 J. Air Force Eng. Univ. 12 22 (in Chinese) [刘朋冲, 李军, 贾敏, 文彬 2011 空军工程大学学报 12 22]

    [25]

    Jayaraman B, Shyy W 2008 Prog. Aerospace Sci. 44 139

    [26]

    Cheng Y F, Nie W S, Che X K 2012 Chin. Sci. Bull. 57 2164 (in Chinese) [程钰锋, 聂万胜, 车学科 2012 科学通报 57 2164]

    [27]

    Zhang P F, Liu A B, Wang J J 2010 Sci. China Tech. Sci. 53 2772

    [28]

    Ekici O, Ezekoye O A, Hall M J, Matthewa R D 2007 J. Fluid Eng. ASME. 129 55

    [29]

    D'Angola A, Colonna G, Gorse G, Capitelli M 2008 Eur. Phys. J. D 46 129

    [30]

    Naghizadeh-Kashani Y, Cressault Y, Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925

    [31]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 015210

    [32]

    Akram M 1996 AIAA J. 34 1835

    [33]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p5 (in Chinese) [杨世铭, 陶文铨 1998 传热学 (北京: 高等教育出版社) 第5页]

    [34]

    Greason W D, Kucerovsky Z, Bulach S, Flatley M W 1997 IEEE Trans. Ind. Appl. 33 1519

    [35]

    Wang L, Luo Z B, Xia Z X, Liu B, Deng X 2012 Sci. China Tech. Sci. 55 2225

    [36]

    Narayanaswamy V 2010 Ph. D. Dissertation (Austin: the University of Texas at Austin)

  • [1]

    Corke T C, Enloe C L, Wilkinson S P 2010 Annu. Rev. Fluid Mech. 42 505

    [2]

    Leonov S, Yarantsev D 2008 J. Propul. Power 24 1168

    [3]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 J. Phys. D: Appl. Phys. 42 165503

    [4]

    Grossman K R, Cybyk B Z, van Wie D M 2003 41st Aerospace Science Meeting and Exhibit Reno Nevada, USA, January 6-9, 2003

    [5]

    Roth J 2003 Phys. Plasmas 42 165503

    [6]

    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605

    [7]

    Zhang P F, Wang J J, Feng L H, Wang G B 2010 AIAA J. 48 249

    [8]

    Li Y H, Wu Y, Liang H, Song H M, Jia M 2010 Chin. Sci. Bull. 55 3060 (in Chinese) [李应红, 吴云, 梁华, 宋慧敏, 贾敏 2010 科学通报 55 3060]

    [9]

    Li G, Li Y M, Xu Y J, Zhang Y, Li H M, Nie C Q, Zhu J Q 2009 Acta Phys. Sin. 58 4026 (in Chinese) [李刚, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强 2009 58 4026]

    [10]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 Acta Phys. Sin. 58 55113 (in Chinese) [王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云 2009 58 5513]

    [11]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060510 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 61 060510]

    [12]

    Narayanaswamy V, Raia L L, Clemens N T 2010 AIAA J. 48 297

    [13]

    Haack S, Taylor T, Emhoif J, Cybyk B 2010 5th Flow Control Conference Chicago Illinois, USA, June 28-July 1, 2010

    [14]

    Ko H S, Haack S J, Land H B, Cybyk B, Katz J, Kim H J 2010 Flow Meas. Instrum. 21 443

    [15]

    Cybyk B Z, Wilkerson J T, Grossman K R 2004 2nd AIAA Flow Control Conference Portland Oregon, USA, June 28-July 1, 2004

    [16]

    Narayanaswamy V, Raja L L, Clemens N T 2012 AIAA J. 50 246

    [17]

    Anderson K, Knight D D 2012 AIAA J. 50 1855

    [18]

    Caruana D, Barricau P, Hardy P, Cambronne J P, Belinger A 2009 47th AIAA Aerospace Sciences Meeting Inculding the New Horizons Forum and Aerospace Exposition Orlando Florida, USA, January 5-8, 2009

    [19]

    Belinger A, Hardy P, Gherardi N, Naudé N, Cambronne J P, Caruana D 2011 IEEE Trans. Plasma. Sci. 39 2334

    [20]

    Belinger A, Hardy P, Barricau P, Cambronne J P, Caruana D 2011 J. Phys. D: Appl. Phys. 44 365201

    [21]

    Shin J 2010 Chin. J. Aeronaut. 23 518

    [22]

    Shan Y, Zhang J Z, Tan X M 2011 J. Aero. Power 26 551 (in Chinese) [单勇, 张靖周, 谭晓茗 2011 航空动力学报 26 551]

    [23]

    Jia M, Liang H, Song H M, Liu P C, Wu Y 2011 High Voltage Engin. 37 1493 (in Chinese) [贾敏, 梁华, 宋慧敏, 刘朋冲, 吴云 2011 高电压技术 37 1493]

    [24]

    Liu P C, Li J, Jia M, Wen B 2011 J. Air Force Eng. Univ. 12 22 (in Chinese) [刘朋冲, 李军, 贾敏, 文彬 2011 空军工程大学学报 12 22]

    [25]

    Jayaraman B, Shyy W 2008 Prog. Aerospace Sci. 44 139

    [26]

    Cheng Y F, Nie W S, Che X K 2012 Chin. Sci. Bull. 57 2164 (in Chinese) [程钰锋, 聂万胜, 车学科 2012 科学通报 57 2164]

    [27]

    Zhang P F, Liu A B, Wang J J 2010 Sci. China Tech. Sci. 53 2772

    [28]

    Ekici O, Ezekoye O A, Hall M J, Matthewa R D 2007 J. Fluid Eng. ASME. 129 55

    [29]

    D'Angola A, Colonna G, Gorse G, Capitelli M 2008 Eur. Phys. J. D 46 129

    [30]

    Naghizadeh-Kashani Y, Cressault Y, Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925

    [31]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 015210

    [32]

    Akram M 1996 AIAA J. 34 1835

    [33]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p5 (in Chinese) [杨世铭, 陶文铨 1998 传热学 (北京: 高等教育出版社) 第5页]

    [34]

    Greason W D, Kucerovsky Z, Bulach S, Flatley M W 1997 IEEE Trans. Ind. Appl. 33 1519

    [35]

    Wang L, Luo Z B, Xia Z X, Liu B, Deng X 2012 Sci. China Tech. Sci. 55 2225

    [36]

    Narayanaswamy V 2010 Ph. D. Dissertation (Austin: the University of Texas at Austin)

  • [1] 周雄峰, 陈彬, 刘坤. 氩气等离子体射流特性: 电压、气流、外磁场的综合影响.  , 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [2] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析.  , 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [3] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性.  , 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [4] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断.  , 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [5] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究.  , 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [6] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜.  , 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [7] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控.  , 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [8] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强.  , 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [9] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性.  , 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [10] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性.  , 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [11] 潘子宇, 胡晗, 杨洁. 基于休眠机理的三维小基站蜂窝网络能效优化.  , 2017, 66(23): 230101. doi: 10.7498/aps.66.230101
    [12] 张一川, 杨宽, 李唤, 朱晓东. ICP微等离子体射流在快速成形制造中的应用.  , 2016, 65(14): 145201. doi: 10.7498/aps.65.145201
    [13] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性.  , 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [14] 王林, 夏智勋, 罗振兵, 周岩, 张宇. 两电极等离子体合成射流激励器工作特性研究.  , 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [15] 耿少飞, 唐德礼, 邱孝明, 聂军伟, 于毅军. 霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响.  , 2012, 61(7): 075210. doi: 10.7498/aps.61.075210
    [16] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究.  , 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [17] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断.  , 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [18] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究.  , 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
    [19] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究.  , 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [20] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟.  , 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
计量
  • 文章访问数:  7606
  • PDF下载量:  1151
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-06
  • 修回日期:  2013-01-30
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map