搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电负性气体的掺入对容性耦合Ar等离子体的影响

洪布双 苑涛 邹帅 唐中华 徐东升 虞一青 王栩生 辛煜

引用本文:
Citation:

电负性气体的掺入对容性耦合Ar等离子体的影响

洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜

Influence of addifion of electronegative gases on the properties of capacitively coupled Ar plasmas

Hong Bu-Shuang, Yuan Tao, Zou Shuai, Tang Zhong-Hua, Xu Dong-Sheng, Yu Yi-Qing, Wang Xu-Sheng, Xin Yu
PDF
导出引用
  • 本文利用朗缪尔静电探针对掺入了电负性气体O2, Cl2, SF6的由4068 MHz激发的单射频容性耦合Ar等离子体进行了诊断测量. 测量结果表明: 随着电负性气体流量的增加, 电子能量概率分布函数出现了高能峰, 高能峰且有向高能侧漂移的现象; 电负性气体掺入Ar等离子体后显著降低了等离子体的电子密度; 电子温度随着电负性气体流量比的增加而升高. 另外, 本文还测量了掺入三种电负性气体后在不同流量比下的混合气体等离子体的电负度α . 对实验现象进行了初步的解释.
    Investigation of electronegative plasmas has now been atrractive due to the advantages of negative-ion assisted etching and charge-free ion implantation in semiconductor manufacture. Langmuir electrostatic probe, as a simple, inexpensive and good spatial resolution diagnosic tool, is popularly used in investigating electronegative plasmas. In this paper, the Langmuir electrostatic probe is proposed to measure the capacitively coupled Ar plasmas with added electronegative gases, such as O2, Cl2 and SF6. The experimental results from the measurements of Ar plasmas with added electronegative gases driven by a 40.68 MHz field indicate that, with increasing flow rate of electronegative gas, high energy peak will occur in electron energy possibility function and shift towards higher energyside. The addition of electronegative gases reduces the electron density significantly as the electron temperature increases. We also calculate the electronegativity of Ar plasmas for the three kinds of electronegative gases. The preliminary interpretations of the above experimental phenomena are presented.
    • 基金项目: 国家自然科学基金(批准号: 11175127)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175127).
    [1]

    Samukawa S, Mieno T 1996 Plasma sources Sci. Technol. 5 132

    [2]

    Stoffels E, Stoffels W W, Kroesen G M W 2001 Plasma sources Sci. Technol. 10 311

    [3]

    Crespo R M, Palop J I F, Hernández M A, Del Pino S B, Díaz-Cabrera J M, Ballesteros J 2006 J. App. Phys. 99 053303

    [4]

    Doucet H J 1970 Phys. Lett. 33 A 283

    [5]

    Sheridan T E 1999 J. phys. D: Appl. Phys. 32 1761

    [6]

    Chabert P, Sheridan T E, Boswell R W, Perrin J 1999 Plasma Sources Sci. Technol. 8 561

    [7]

    Boyd R L F, Thompson J B 1959 Proc. R. Soc. A 252 102

    [8]

    Shindo M, Uchino S, Lchiki R, Yoshimura S, Kawai Y 2001 Rev. Sci. Instrum. 72 2288

    [9]

    Chung T H, Shin Y M, Seo D C 2006 Contrib. Plasma Phys. 46 348

    [10]

    Joh H M, Chung T H, Chung K S 2010 Thin Solid Films 518 6686

    [11]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002

    [12]

    Draghici M, Stamate E 2010 J. Phys. D: Appl. Phys. 43 155205

    [13]

    Stenzel R L 1976 Rev. Sci. Instrum. 47 603

    [14]

    Piejak R B, Godyak V A, Garner R, Alexandrovich B M 2004 J. App. Phys. 95 3785

    [15]

    Piejak R B, Al Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734

    [16]

    Sun K, Xin Y, Huang X J, Yuan Q H, Ning Z Y 2008 Acta Phys. Sin. 57 6465 [孙恺, 辛煜, 黄晓江, 袁强华, 宁兆元 2008 57 6465]

    [17]

    Schwabedissen A, Benck E C, Roberts J R 1998 Plasma Sources Sci. Technol. 7 119

    [18]

    Malyshev M V, Fuller N C M, Bogart K H A, Donnelly V M 2000 J. Appl. Phys. 105 113307

    [19]

    Tuszewski M, White R R 2002 Plasma Sources Sci. Technol. 11 338

    [20]

    Zhou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta. Phys. Sin 61 075204 [邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜 2012 61 075204]

    [21]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 87 1642

    [22]

    Wang Z, Lichtenberg A J, Cohen R H 1998 Plasma Source Sci. Technol. 8 151

    [23]

    Lallement L, Rhallabi A, Cardinaud C, Peignon-Fernandez M C, Alves L L 2009 Plasma Sources Sci. Technol. 18 025001

    [24]

    Noguchi M, Hirao T, Shindo T H, Sakurauchi K, Yamagata Y, Uchino K, Kawai Y, Muraoka K 2003 Plasma Sources Sci. Technol. 12 403

    [25]

    Franklin R N 2002 Plasma Sources Sci. Technol. 11 A31

    [26]

    Stoffels E, Stofeels W W, Vender D, Kando M, Kroesen G M W, Hoog F J 1995 Phys. Rev. E 51 2435

    [27]

    Katsch H M, Strum T, Quandt E, Dobele H F 2000 Plasma sources Sci. Technol. 9 323

    [28]

    Passchier J P P, Goedheer W J 1993 J. Appl. Phys. 73 1073

    [29]

    Lichtenberg A J, Kouznetsov I G, Lee Y T, Lieberman M A, Kaganovich I D, Tsendin L D 1997 Plasma Sources Sci. Technol. 6 437

  • [1]

    Samukawa S, Mieno T 1996 Plasma sources Sci. Technol. 5 132

    [2]

    Stoffels E, Stoffels W W, Kroesen G M W 2001 Plasma sources Sci. Technol. 10 311

    [3]

    Crespo R M, Palop J I F, Hernández M A, Del Pino S B, Díaz-Cabrera J M, Ballesteros J 2006 J. App. Phys. 99 053303

    [4]

    Doucet H J 1970 Phys. Lett. 33 A 283

    [5]

    Sheridan T E 1999 J. phys. D: Appl. Phys. 32 1761

    [6]

    Chabert P, Sheridan T E, Boswell R W, Perrin J 1999 Plasma Sources Sci. Technol. 8 561

    [7]

    Boyd R L F, Thompson J B 1959 Proc. R. Soc. A 252 102

    [8]

    Shindo M, Uchino S, Lchiki R, Yoshimura S, Kawai Y 2001 Rev. Sci. Instrum. 72 2288

    [9]

    Chung T H, Shin Y M, Seo D C 2006 Contrib. Plasma Phys. 46 348

    [10]

    Joh H M, Chung T H, Chung K S 2010 Thin Solid Films 518 6686

    [11]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002

    [12]

    Draghici M, Stamate E 2010 J. Phys. D: Appl. Phys. 43 155205

    [13]

    Stenzel R L 1976 Rev. Sci. Instrum. 47 603

    [14]

    Piejak R B, Godyak V A, Garner R, Alexandrovich B M 2004 J. App. Phys. 95 3785

    [15]

    Piejak R B, Al Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734

    [16]

    Sun K, Xin Y, Huang X J, Yuan Q H, Ning Z Y 2008 Acta Phys. Sin. 57 6465 [孙恺, 辛煜, 黄晓江, 袁强华, 宁兆元 2008 57 6465]

    [17]

    Schwabedissen A, Benck E C, Roberts J R 1998 Plasma Sources Sci. Technol. 7 119

    [18]

    Malyshev M V, Fuller N C M, Bogart K H A, Donnelly V M 2000 J. Appl. Phys. 105 113307

    [19]

    Tuszewski M, White R R 2002 Plasma Sources Sci. Technol. 11 338

    [20]

    Zhou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta. Phys. Sin 61 075204 [邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜 2012 61 075204]

    [21]

    Malyshev M V, Donnelly V M 2000 J. Appl. Phys. 87 1642

    [22]

    Wang Z, Lichtenberg A J, Cohen R H 1998 Plasma Source Sci. Technol. 8 151

    [23]

    Lallement L, Rhallabi A, Cardinaud C, Peignon-Fernandez M C, Alves L L 2009 Plasma Sources Sci. Technol. 18 025001

    [24]

    Noguchi M, Hirao T, Shindo T H, Sakurauchi K, Yamagata Y, Uchino K, Kawai Y, Muraoka K 2003 Plasma Sources Sci. Technol. 12 403

    [25]

    Franklin R N 2002 Plasma Sources Sci. Technol. 11 A31

    [26]

    Stoffels E, Stofeels W W, Vender D, Kando M, Kroesen G M W, Hoog F J 1995 Phys. Rev. E 51 2435

    [27]

    Katsch H M, Strum T, Quandt E, Dobele H F 2000 Plasma sources Sci. Technol. 9 323

    [28]

    Passchier J P P, Goedheer W J 1993 J. Appl. Phys. 73 1073

    [29]

    Lichtenberg A J, Kouznetsov I G, Lee Y T, Lieberman M A, Kaganovich I D, Tsendin L D 1997 Plasma Sources Sci. Technol. 6 437

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统.  , 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体.  , 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [3] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生.  , 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [4] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断.  , 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布.  , 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [7] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [8] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究.  , 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [9] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取.  , 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响.  , 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量.  , 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [12] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断.  , 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [13] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究.  , 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [14] 郭庆林, 周玉龙, 张 博, 张秋琳, 张金平, 怀素芳. 减压氩气下基体对激光微等离子体电子温度的影响.  , 2007, 56(9): 5318-5322. doi: 10.7498/aps.56.5318
    [15] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量.  , 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [16] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性.  , 2004, 53(10): 3394-3397. doi: 10.7498/aps.53.3394
    [17] 杨家敏, 丁耀南, 陈 波, 郑志坚, 杨国洪, 张保汉, 王耀梅, 张文海. 等电子法测量小能量激光打靶等离子体电子温度.  , 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [18] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布.  , 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度.  , 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
计量
  • 文章访问数:  7328
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-10
  • 修回日期:  2012-12-05
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map