搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同压力下介质阻挡放电等离子体诱导流场演化的实验研究

程钰锋 聂万胜 车学科 田希晖 侯志勇 周鹏辉

引用本文:
Citation:

不同压力下介质阻挡放电等离子体诱导流场演化的实验研究

程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉

Experimental investigation on the evolution of dielectric barrier discharge plasma induced flow at different operating pressures

Cheng Yu-Feng, Nie Wan-Sheng, Che Xue-Ke, Tian Xi-Hui, Hou Zhi-Yong, Zhou Peng-Hui
PDF
导出引用
  • 采用粒子图像测速技术, 获得了不同环境压力下介质阻挡放电等离子体诱导流场启动涡随时间的演化规律和诱导流场分布的变化规律. 实验表明: 不同环境压力下, 诱导流场都会出现启动涡, 压力较高, 启动涡逐渐向右即向植入电极一侧扩散并最终消失, 扩散速度随时间递减, 压力较小, 诱导漩涡不会随放电时间的增大而消失; 环境压力减小, 等离子体诱导流场的启动时间减小, 诱导流场的法向分量增强、横向分量减弱, 诱导流线形状的变化规律是:L→U→V, L 型流线没有诱导漩涡, U 型流线有两个诱导旋涡, 分别分布在U 型凹槽和右侧, V 型流线有一个诱导漩涡, 分布在V 中间.
    The evolutions of dielectric barrier discharge (DBD) plasma induced starting vortex and the transformation of the DBD plasma induced flow field at different operating pressures are obtained by particle image velocimetry. The results show that the starting vortex will diffuse to the embedded electrode side and then disappear, and the diffusivity will decrease as the time goes on at high operating pressure. But the starting vortex will not change in location, and it will not disappear at low operating pressure. As the operating pressure decreases, the starting time of plasma induced flow field decreases, the ordinate orientation of the induced flowfield increases, and the landscape orientation of the induced flowfield decreases. The form of the induced streamline will come through L→U→V as the pressure decreases. There is no induced vortex in the form of L. There are two induced vortexes in the form of U which lay in the middle and on the right hand of the form U respectively, and there is one induced vortex in the form of V which lays in the middle of form V.
    • 基金项目: 国家自然科学基金(批准号: 11205244, 51076168)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205244, 51076168).
    [1]

    Kantrowitz A 1955 Proceedings of the Conference on High-Speed Aeronautics pp335-339

    [2]

    Li G, Nie C Q, Zhu J Q, Li H M, Zhang Y 2008 Sci. Technol. 26 87 (in Chinese) [李刚, 聂超群, 朱俊强, 李汉明, 张翼 2008 科技导报 26 87]

    [3]

    Li G, Li Y M, Xu Y J, Zhang Y, Li H M, Nie C Q, Zhu J Q 2008 Acta Phys. Sin. 58 4026 (in Chinese) [李刚, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强 2008 58 4026]

    [4]

    Roth J R, Barker R J 1995 ADA 302641

    [5]

    Roth J R 2001 Industrial Plasma Engineering Volume II Applications to Non-Thermal Plasma Processing (Bristol and Philadelphia: Institute of Physics Publishing)

    [6]

    Roth J R, Rahel J, Dai X, Sherman D M 2005 J. Phys. D: Appl. Phys. 38 555

    [7]

    Post M, Corke T 2004 ADA 424112

    [8]

    Estevadeordal J, Gogineni S 2006 AFRL-VA-WP-TR-2006-3211

    [9]

    Colub V V, Eduard E S, Andrii S S, Vladislav A S, Dmitry V T 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Florida, 4-7 January 2011

    [10]

    Wu Y, Li Y H, Jia M, Song H M, Su C B, Pu Y K 2010 Chin. J. Aeronaut. 23 151

    [11]

    Wang W B, Huang Y, Huang Z B, Zhang X, Wang X N, Shen Z H 2012 J. Exp. Fluid Mech. 26 1 (in Chinese) [王万波, 黄勇, 黄宗波, 张鑫, 王勋年, 沈志洪 2012 实验流体力学 26 1]

    [12]

    Meng X S, Li H X, Tang H R, Luo S J, Liu F 2012 J. Northwestern Polytech. Univ. 30 402 (in Chinese) [孟宣市, 李华星, 唐花蕊, 罗时均, 刘锋 2012 西北工业大学学报 30 402]

    [13]

    Vo H D 2010 J. Propulsion and Power 26 808

    [14]

    Abe T, Takagaki M 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio Texas, 22-25 June 2009

    [15]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 61 060509]

    [16]

    Che X K, Sao T, Nie W S, Yan P 2012 J. Phys. D: Appl. Phys. 45 145201

    [17]

    Suzen Y B, Huang P G, Jacob J D 2005 35th AIAA Fluid Dynamics Conference and Exhibit Toronto Ontario, Canada, 6-9 June 2005

  • [1]

    Kantrowitz A 1955 Proceedings of the Conference on High-Speed Aeronautics pp335-339

    [2]

    Li G, Nie C Q, Zhu J Q, Li H M, Zhang Y 2008 Sci. Technol. 26 87 (in Chinese) [李刚, 聂超群, 朱俊强, 李汉明, 张翼 2008 科技导报 26 87]

    [3]

    Li G, Li Y M, Xu Y J, Zhang Y, Li H M, Nie C Q, Zhu J Q 2008 Acta Phys. Sin. 58 4026 (in Chinese) [李刚, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强 2008 58 4026]

    [4]

    Roth J R, Barker R J 1995 ADA 302641

    [5]

    Roth J R 2001 Industrial Plasma Engineering Volume II Applications to Non-Thermal Plasma Processing (Bristol and Philadelphia: Institute of Physics Publishing)

    [6]

    Roth J R, Rahel J, Dai X, Sherman D M 2005 J. Phys. D: Appl. Phys. 38 555

    [7]

    Post M, Corke T 2004 ADA 424112

    [8]

    Estevadeordal J, Gogineni S 2006 AFRL-VA-WP-TR-2006-3211

    [9]

    Colub V V, Eduard E S, Andrii S S, Vladislav A S, Dmitry V T 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Florida, 4-7 January 2011

    [10]

    Wu Y, Li Y H, Jia M, Song H M, Su C B, Pu Y K 2010 Chin. J. Aeronaut. 23 151

    [11]

    Wang W B, Huang Y, Huang Z B, Zhang X, Wang X N, Shen Z H 2012 J. Exp. Fluid Mech. 26 1 (in Chinese) [王万波, 黄勇, 黄宗波, 张鑫, 王勋年, 沈志洪 2012 实验流体力学 26 1]

    [12]

    Meng X S, Li H X, Tang H R, Luo S J, Liu F 2012 J. Northwestern Polytech. Univ. 30 402 (in Chinese) [孟宣市, 李华星, 唐花蕊, 罗时均, 刘锋 2012 西北工业大学学报 30 402]

    [13]

    Vo H D 2010 J. Propulsion and Power 26 808

    [14]

    Abe T, Takagaki M 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio Texas, 22-25 June 2009

    [15]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 61 060509]

    [16]

    Che X K, Sao T, Nie W S, Yan P 2012 J. Phys. D: Appl. Phys. 45 145201

    [17]

    Suzen Y B, Huang P G, Jacob J D 2005 35th AIAA Fluid Dynamics Conference and Exhibit Toronto Ontario, Canada, 6-9 June 2005

  • [1] 梁华志, 张靖仪. 临界中性Gauss-Bonnet-anti-de Sitter黑洞复杂度演化.  , 2021, 70(3): 030401. doi: 10.7498/aps.70.20201286
    [2] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡.  , 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [3] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究.  , 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [4] 曹晓霞, 马松华, 任清褒, 杨征. (2+1)维破裂孤子方程的多 Solitoff 解及其演化.  , 2012, 61(14): 140505. doi: 10.7498/aps.61.140505
    [5] 蒋黎红, 马松华, 方建平, 吴红玉. (3+1)维Burgers系统的新孤子解及其演化.  , 2012, 61(2): 020510. doi: 10.7498/aps.61.020510
    [6] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究.  , 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [7] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化.  , 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [9] 袁春华, 李晓红, 唐多昌, 杨宏道, 李国强. Nd:YAG纳秒激光诱导硅表面微结构的演化.  , 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响.  , 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性.  , 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [12] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用.  , 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [13] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究.  , 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [14] 颜森林. 混沌信号在光纤传输过程中的非线性演化.  , 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [15] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究.  , 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [16] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究.  , 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [17] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究.  , 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [18] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究.  , 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程.  , 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
计量
  • 文章访问数:  6075
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-19
  • 修回日期:  2013-01-14
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map