-
在强流相对论电子束驱动的相对论速调管放大器中, 由于强流和高场强的影响, 尤其是中间腔具有高Q值, 微波腔与电子束之间的非线性作用很明显, 严重影响器件性能. 根据麦克斯韦方程组以及电子在微波场作用下运动方程给出了中间腔的束-波互作用自洽方程. 从这些方程出发, 研究了调制深度和调制频率对间隙电压幅度和相位的影响. 对比常规速调管的等效电路模型, 自洽公式给出的间隙电压幅值同粒子模拟结果更接近, 尤其是较高调制深度的情况. 同时器件带宽随调制深度的增加而变宽, 这也同粒子模拟结果一致. 由此设计了一个S波段高增益相对论放大器, 在LTD (长脉冲螺旋线)加速器上开展了相应的实验工作, 实验上获得了1.1 GW的输出功率, 器件增益49 dB.In the relativistic klystron driven by intense relativistic electron beam, due to the influences of intense current and high electric field, especially the high Q value for the intermediate cavity, the nonlinear interaction between the intermediate cavity and the electron beam is very strong. It will significantly affect the performance of the device. According to the Maxwell equations and one-dimensional motion equation of electron, the self-consistent equation of the beam-wave interaction is obtained in the intermediate cavity. Based on these equations, the influences of the modulation depth and the modulation frequency on the amplitude and phase of gap voltage are studied respectively. The voltage amplitude obtained by the self-consistent equation is close to the voltage amplitude of particle in cell simulation, especially under the higher modulation depth compared with that obtained from the equivalent circuit model of conventional klystron. Meanwhile, the bandwidth of device becomes wide with the increase of the modulation depth. Finally, an S-band high-gain RKA is designed, and the corresponding experiments are done on the LTD accelerator. The output power with 1.1 GW is obtained, the gain is 49 dB.
-
Keywords:
- RKA /
- nonlinear interaction /
- self-consistent equation
[1] Uhm H S, Kim H S 2001 Appl. Phys. 89 4224
[2] Friedman M, Serlin V 1988 Appl. Phys. 58 1460
[3] Uhm H S 1993 Phys. Fluids B 5 2343
[4] Nusinovich G, Read M, Song L Q 2004 Phys. Plasmas 11 4894
[5] Wu Y, Xu Z, Jin X, Chang A B, Li Z H, Huang H, Liu Z, Luo X, Ma Q S, Tang C X 2011 Acta Phys. Sin. 60 044102 (in Chinese) [吴洋, 许州, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥 2011 60 044102]
[6] Carlsten B E, Faehl R J, Fazio M V, Haynes W B, Ryne R D, Stringfield R M 1994 IEEE Trans. Plasma Sci. 22 730
[7] Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: Nation Defense Industry Press) p74 (in Chinese) [丁耀根 2008 大功率速调管的理论与计算模拟 (北京: 国防工业出版社) 第63页]
[8] Li Z H, Meng F B, Chang A B, Huang H, Ma Q S 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红, 孟凡宝, 常安碧, 黄华, 马乔生 2005 54 3578]
-
[1] Uhm H S, Kim H S 2001 Appl. Phys. 89 4224
[2] Friedman M, Serlin V 1988 Appl. Phys. 58 1460
[3] Uhm H S 1993 Phys. Fluids B 5 2343
[4] Nusinovich G, Read M, Song L Q 2004 Phys. Plasmas 11 4894
[5] Wu Y, Xu Z, Jin X, Chang A B, Li Z H, Huang H, Liu Z, Luo X, Ma Q S, Tang C X 2011 Acta Phys. Sin. 60 044102 (in Chinese) [吴洋, 许州, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥 2011 60 044102]
[6] Carlsten B E, Faehl R J, Fazio M V, Haynes W B, Ryne R D, Stringfield R M 1994 IEEE Trans. Plasma Sci. 22 730
[7] Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: Nation Defense Industry Press) p74 (in Chinese) [丁耀根 2008 大功率速调管的理论与计算模拟 (北京: 国防工业出版社) 第63页]
[8] Li Z H, Meng F B, Chang A B, Huang H, Ma Q S 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红, 孟凡宝, 常安碧, 黄华, 马乔生 2005 54 3578]
计量
- 文章访问数: 5657
- PDF下载量: 422
- 被引次数: 0