搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In掺杂ZnTe发光性能的第一性原理计算

令狐佳珺 梁工英

引用本文:
Citation:

In掺杂ZnTe发光性能的第一性原理计算

令狐佳珺, 梁工英

First-principles study on the luminescence property of In-doped ZnTe

Linghu Jia-Jun, Liang Gong-Ying
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理对In掺入ZnTe半导体后引入的各种缺陷进行了结构优化、 能带和态密度分析及转换能级的计算. 计算结果表明: 掺杂后体系中主要存在两种缺陷, 一种是In原子替换了Zn原子的置换型缺陷; 另一种是由In替换Zn后再与临近的Zn空位形成的复合缺陷. 二者分别在导带底下方0.26 eV和价带顶上方0.33 eV的位置形成各自的转换能级. 电子在这两个转换能级之间跃迁辐射出的能量大小与实验测量到的能量大小相符, 解释了原本发绿光的ZnTe在掺入In后发出近红外光的根本原因.
    First-principles theory is adopted to analyze the characteristics of defects in ZnTe induced by In doping. The geometry structures, formation energies, band structures, densities of states and transition levels of the defects are calculated. The results show that there are two kinds of major defects in In-doped ZnTe. One is the atomic substitution defect of Zn replaced by In, which gives rise to a transition level located at 2.6 eV beneath the conduction band. The other is a complex defect, consisting of one In substituting Zn and one nearby Zn vacancy, which results in a transition level 0.33 eV higher than the top level of valance band. Electron transition between these two transition levels can be regards as the origin of the near-infrared light observed experimentally in In-doped ZnTe.
    [1]

    Jobsis F F 1977 Science 198 1264

    [2]

    Hebdeny J C, Arridge S R, Delpy D T 1997 Phys. Med. Biol. 42 825

    [3]

    Gibson A P, Hebden J C, Arridge S R 2005 Phys. Med. Biol. 50 R1

    [4]

    Franceschini M A, Boas D A 2004 Neuro Image 21 372

    [5]

    Colak S B, van der Mark M B, Hooft G W, Hoogenraad J H, van der Linden E S, Kuijpers F A 1999 J. Select. Topics in Quantum Electron. 5 1143

    [6]

    Hines M A, Scholes G D 2003 Adv. Mater. 15 1844

    [7]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Garcia Sole J, Jaque D 2012 Nanoscale 4 298

    [8]

    Zhou W C, Tang D S, Pan A L, Zhang Q L, Wan Q, Zou B S 2011 J. Phys. Chem. C 115 1415

    [9]

    Haase M A, Qiu J, DePuydt J M, Cheng H 1991 Appl. Phys. Lett. 59 1272

    [10]

    Pan A L, Liu R B, Zhang Q L, Wan Q, He P B, Zacharias M, Zou B S 2007 J. Phys. Chem. C 111 14253

    [11]

    Pan A L, Liu D, Liu R B, Wang F F, Zhu X, Zou B S 2005 Small 1 980

    [12]

    Singh A, Li X Y, Protasenko V, Galantai G, Kuno M, Xing H, Jena D 2007 Nano Lett. 7 2999

    [13]

    Liu R, Gu C M, He L R, Wu S, Shen W Z 2004 Acta Phys. Sin. 53 1217 (in Chinese) [刘锐, 顾春明, 贺莉蓉, 吴森, 沈文忠 2004 53 1217]

    [14]

    Sato K, Asahi T, Hanafusa M, Noda A, Arakawa A, Uchida M, Oda O, Yamada Y, Taguchi T 2000 Phys. Stat. Sol. A 180 267

    [15]

    Bozzini B, Bader M A, Cavallotti P L, Cerri E, Lenardi C 2000 Thin Solid Films 361 388

    [16]

    Huang D, Shao Z Y, Chen D H, Guo J, Li G X 2008 Acta Phys. Sin. 57 1078 (in Chinese) [黄丹, 邵元智, 陈弟虎, 郭进, 黎光旭2008 57 1078]

    [17]

    Bi Y J, Guo Z Y, Sun H Q, Lin Z, Dong Y C 2008 Acta Phys. Sin. 57 7800 (in Chinese) [毕艳军, 郭志友, 孙慧卿, 林竹, 董玉成 2008 57 7800]

    [18]

    Lee G D, Lee M H, Ihm J 1995 Phys. Rev. B 52 1459

    [19]

    Anisimov V I, Solovyev I V, Korotin M A 1993 Phys. Rev. B 48 16929

    [20]

    Chen K, Fan G H, Zhang Y 2008 Acta Phys. Sin. 57 1054 (in Chinese) [陈琨, 范广涵, 章勇 2008 57 1054]

    [21]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [22]

    Shimazaki T, Asai Y 2010 J. Chem. Phys. 132 224105

    [23]

    Karazhanov S Z, Ravindran P, Kjekhus A, Fjellvåg H, Grossner U, Svensson B G 2006 J. Cryst. Growth 287 162

    [24]

    Weast R C, Astle M J, Beyer W H 1988 CRC Handbook of Chemistry and Physics (1st Ed.) (Boca Raton, FL: CRC Press) p46

    [25]

    Komsa H P, Pasquarello A 2010 Appl. Phys. Lett. 97 191901

    [26]

    Watkins G D 1996 J. Cryst. Growth 159 338

    [27]

    Ribeiro C A, Pautrat J L 1973 Solid State Commun. 13 589

  • [1]

    Jobsis F F 1977 Science 198 1264

    [2]

    Hebdeny J C, Arridge S R, Delpy D T 1997 Phys. Med. Biol. 42 825

    [3]

    Gibson A P, Hebden J C, Arridge S R 2005 Phys. Med. Biol. 50 R1

    [4]

    Franceschini M A, Boas D A 2004 Neuro Image 21 372

    [5]

    Colak S B, van der Mark M B, Hooft G W, Hoogenraad J H, van der Linden E S, Kuijpers F A 1999 J. Select. Topics in Quantum Electron. 5 1143

    [6]

    Hines M A, Scholes G D 2003 Adv. Mater. 15 1844

    [7]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Garcia Sole J, Jaque D 2012 Nanoscale 4 298

    [8]

    Zhou W C, Tang D S, Pan A L, Zhang Q L, Wan Q, Zou B S 2011 J. Phys. Chem. C 115 1415

    [9]

    Haase M A, Qiu J, DePuydt J M, Cheng H 1991 Appl. Phys. Lett. 59 1272

    [10]

    Pan A L, Liu R B, Zhang Q L, Wan Q, He P B, Zacharias M, Zou B S 2007 J. Phys. Chem. C 111 14253

    [11]

    Pan A L, Liu D, Liu R B, Wang F F, Zhu X, Zou B S 2005 Small 1 980

    [12]

    Singh A, Li X Y, Protasenko V, Galantai G, Kuno M, Xing H, Jena D 2007 Nano Lett. 7 2999

    [13]

    Liu R, Gu C M, He L R, Wu S, Shen W Z 2004 Acta Phys. Sin. 53 1217 (in Chinese) [刘锐, 顾春明, 贺莉蓉, 吴森, 沈文忠 2004 53 1217]

    [14]

    Sato K, Asahi T, Hanafusa M, Noda A, Arakawa A, Uchida M, Oda O, Yamada Y, Taguchi T 2000 Phys. Stat. Sol. A 180 267

    [15]

    Bozzini B, Bader M A, Cavallotti P L, Cerri E, Lenardi C 2000 Thin Solid Films 361 388

    [16]

    Huang D, Shao Z Y, Chen D H, Guo J, Li G X 2008 Acta Phys. Sin. 57 1078 (in Chinese) [黄丹, 邵元智, 陈弟虎, 郭进, 黎光旭2008 57 1078]

    [17]

    Bi Y J, Guo Z Y, Sun H Q, Lin Z, Dong Y C 2008 Acta Phys. Sin. 57 7800 (in Chinese) [毕艳军, 郭志友, 孙慧卿, 林竹, 董玉成 2008 57 7800]

    [18]

    Lee G D, Lee M H, Ihm J 1995 Phys. Rev. B 52 1459

    [19]

    Anisimov V I, Solovyev I V, Korotin M A 1993 Phys. Rev. B 48 16929

    [20]

    Chen K, Fan G H, Zhang Y 2008 Acta Phys. Sin. 57 1054 (in Chinese) [陈琨, 范广涵, 章勇 2008 57 1054]

    [21]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [22]

    Shimazaki T, Asai Y 2010 J. Chem. Phys. 132 224105

    [23]

    Karazhanov S Z, Ravindran P, Kjekhus A, Fjellvåg H, Grossner U, Svensson B G 2006 J. Cryst. Growth 287 162

    [24]

    Weast R C, Astle M J, Beyer W H 1988 CRC Handbook of Chemistry and Physics (1st Ed.) (Boca Raton, FL: CRC Press) p46

    [25]

    Komsa H P, Pasquarello A 2010 Appl. Phys. Lett. 97 191901

    [26]

    Watkins G D 1996 J. Cryst. Growth 159 338

    [27]

    Ribeiro C A, Pautrat J L 1973 Solid State Commun. 13 589

  • [1] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究.  , 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [2] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究.  , 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [3] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究.  , 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [4] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究.  , 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [5] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究.  , 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [6] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [7] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究.  , 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [8] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [9] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [10] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [11] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [12] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [13] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算.  , 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [14] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算.  , 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [15] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [16] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究.  , 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [17] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [18] 贺莉蓉, 顾春明, 沈文忠, 曹俊诚, 小川博司, 郭其新. 反应离子刻蚀ZnTe的THz辐射和探测研究.  , 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
    [19] 刘锐, 顾春明, 贺莉蓉, 吴森, 沈文忠, 小川博司, 郭其新. ZnTe晶体中光学整流产生的THz辐射及其电光探测研究.  , 2004, 53(4): 1217-1222. doi: 10.7498/aps.53.1217
    [20] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱.  , 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
计量
  • 文章访问数:  6317
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-06
  • 修回日期:  2013-01-24
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map