搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-ZnO纳米复合热电材料的制备及其性能研究

吴子华 谢华清 曾庆峰

引用本文:
Citation:

Ag-ZnO纳米复合热电材料的制备及其性能研究

吴子华, 谢华清, 曾庆峰

Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel

Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng
PDF
导出引用
  • ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率.
    Zinc oxide (ZnO) has attracted increasing attention as one of the most promising n-type thermoelectric materials. Although ZnO has been screened for high power factor, the ZT results were discouraging for its high thermal conductivity. Preparing nanocomposite is an effective way to reduce the thermal conductivity. The Ag-ZnO nanocomposites were synthesized by means of sol-gel method and their thermoelectric properties were investigated. Their XRD pattern and SEM miro graphs show that Ag nanoparticles are mainly lecated at the grain boundary of ZnO. Increasing Ag content leads to a significant decrease in absolute value of Seebeck coefficient (|S|). The electrical conductivity increases with increasing Ag content, while the thermal conductivity of Ag-ZnO nanocomposites is much lower than the bulk ZnO sample. The highest ZT (0.062) is found for 7.5 mol% Ag@ZnO nanocomposite at 750 K, thirty-five times of that of bulk ZnO. Since the Ag-ZnO junction leads to charge redistribution, the deflexed energy band obtained for ZnO should facilitate the electron transfer across the interface and thus accelerates the mobility of charge carriers. Thus increasing mobility of charge carriers would lead to the increase in electrical conductivity and a decrease in Seebeck coefficient. The difference of thermal conductivity comes from the lattice thermal conductivity. Due to the high density of interfaces and grain boundaries present in the nanocomposites, the scattering of phonons across a broad wavelength spectrum is enhanced. This suppresses the lattice thermal conductivity of the nanocomposites significantly.
    • 基金项目: 国家自然科学基金(批准号:51206103)、上海市教委科研创新项目(批准号:13YZ128)和上海市东方学者岗位支持计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51206103), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ128), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher learning.
    [1]

    Zhou M, Li J F, Kita T 2008 J. Am. Chem. Soc. 130 4527

    [2]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106

    [3]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 61 086101]

    [4]

    Shi X, Chen L, Yang J, Meisner G P 2004 Appl. Phys. Lett. 84 2301

    [5]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [6]

    Wu Z H, Xie H Q, Zeng Q F, Yin M 2012 J. Optoelectron. Adv. Mater. 14 262

    [7]

    Ioffe A F, Goldsmid H J 1957 Semiconductor Thermoelements and Thermoelectric Cooling (1st Edn.) (London:Inforesearch) P72

    [8]

    Ohtaki M, Tssubota T, Eguchi K, Arai H 1996 J. Appl. Phys. 79 1816

    [9]

    Ong K P, Singh D J, Wu P, 2011 Phys. Rev. B 83 115110

    [10]

    Jood P, Mehta R J, Zhang Y L, Peleckis G, Wang X, Siegel R W, Tasciuc T B, Dou S X, Ramanath G 2011 Nano. Lett. 11 4337

    [11]

    Ohtaki M, Maehara S, Shige S 2003 Proc. 22th Int. Conf. Thermoelectrics (France) 171

    [12]

    Feng X M, Cheng Y F, Ye C, Ye J S, Peng J Y, Hu J Q 2012 Mater. Lett. 79 205

    [13]

    Karunakaran C, Rajeswari V, Gomathisankar P, Mater 2011 Sci. in Semicon. Proc. 14 133

    [14]

    Lin D D, Wu H, Qin X L, Pan W 2009 Appl. Phys. Lett. 95 112104

    [15]

    Houng B, Huang C J 2006 Surf. Coat. Technol. 201 3188

    [16]

    Bergman D J, Imry Y 1977 Phys. Rev. Lett. 39 1222

    [17]

    Barber W C, Ye F, Belanger D P 2004 Phys. Rev. B 69 024409

    [18]

    Meir Y 1999 Phys. Rev. Lett. 83 3506

    [19]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [20]

    Liu Y S, Chen Y R, Chen Y C 2009 ACS. Nano. 3 3497

    [21]

    Pei Y Z, Andrew A, Snyder G J 2011 Adv. Energy Mater. 1 291

    [22]

    Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS. Nano. 4 513

    [23]

    Meng C Z, Liu C H, Fan S S 2010 Adv. Mater. 22 535

    [24]

    Zhang R Z, Chen W Y, Yang L N 2012 Acta Phys. Sin. 61 187201 (in Chinese) [张睿智, 陈文灏, 杨璐娜 2012 61 187201]

  • [1]

    Zhou M, Li J F, Kita T 2008 J. Am. Chem. Soc. 130 4527

    [2]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106

    [3]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 61 086101]

    [4]

    Shi X, Chen L, Yang J, Meisner G P 2004 Appl. Phys. Lett. 84 2301

    [5]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [6]

    Wu Z H, Xie H Q, Zeng Q F, Yin M 2012 J. Optoelectron. Adv. Mater. 14 262

    [7]

    Ioffe A F, Goldsmid H J 1957 Semiconductor Thermoelements and Thermoelectric Cooling (1st Edn.) (London:Inforesearch) P72

    [8]

    Ohtaki M, Tssubota T, Eguchi K, Arai H 1996 J. Appl. Phys. 79 1816

    [9]

    Ong K P, Singh D J, Wu P, 2011 Phys. Rev. B 83 115110

    [10]

    Jood P, Mehta R J, Zhang Y L, Peleckis G, Wang X, Siegel R W, Tasciuc T B, Dou S X, Ramanath G 2011 Nano. Lett. 11 4337

    [11]

    Ohtaki M, Maehara S, Shige S 2003 Proc. 22th Int. Conf. Thermoelectrics (France) 171

    [12]

    Feng X M, Cheng Y F, Ye C, Ye J S, Peng J Y, Hu J Q 2012 Mater. Lett. 79 205

    [13]

    Karunakaran C, Rajeswari V, Gomathisankar P, Mater 2011 Sci. in Semicon. Proc. 14 133

    [14]

    Lin D D, Wu H, Qin X L, Pan W 2009 Appl. Phys. Lett. 95 112104

    [15]

    Houng B, Huang C J 2006 Surf. Coat. Technol. 201 3188

    [16]

    Bergman D J, Imry Y 1977 Phys. Rev. Lett. 39 1222

    [17]

    Barber W C, Ye F, Belanger D P 2004 Phys. Rev. B 69 024409

    [18]

    Meir Y 1999 Phys. Rev. Lett. 83 3506

    [19]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [20]

    Liu Y S, Chen Y R, Chen Y C 2009 ACS. Nano. 3 3497

    [21]

    Pei Y Z, Andrew A, Snyder G J 2011 Adv. Energy Mater. 1 291

    [22]

    Kim D, Kim Y, Choi K, Grunlan J C, Yu C 2010 ACS. Nano. 4 513

    [23]

    Meng C Z, Liu C H, Fan S S 2010 Adv. Mater. 22 535

    [24]

    Zhang R Z, Chen W Y, Yang L N 2012 Acta Phys. Sin. 61 187201 (in Chinese) [张睿智, 陈文灏, 杨璐娜 2012 61 187201]

  • [1] 陆杨丹, 吕建国, 杨汝琪, 陆波静, 朱丽萍, 叶志镇. 透明导电ZnO:Al/Cu网格复合膜及其电加热性能.  , 2022, 71(18): 187304. doi: 10.7498/aps.71.20220529
    [2] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [3] 吴静静, 唐鑫, 龙飞, 唐壁玉. GGA+U方法研究ZnO孪晶界对VZn-NO-H复合体对p型导电性的影响.  , 2017, 66(13): 137101. doi: 10.7498/aps.66.137101
    [4] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [5] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [6] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质.  , 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [7] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究.  , 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [8] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究.  , 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [9] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究.  , 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [10] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究.  , 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [11] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒.  , 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [12] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究.  , 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [13] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [14] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性.  , 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [15] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究.  , 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [16] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究.  , 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [17] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [18] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [19] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究.  , 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [20] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究.  , 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
计量
  • 文章访问数:  7960
  • PDF下载量:  974
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-23
  • 修回日期:  2013-01-02
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map