搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析

王国超 颜树华 杨俊 林存宝 杨东兴 邹鹏飞

引用本文:
Citation:

一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析

王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞

Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs

Wang Guo-Chao, Yan Shu-Hua, Yang Jun, Lin Cun-Bao, Yang Dong-Xing, Zou Peng-Fei
PDF
导出引用
  • 本文提出了一种双光梳多外差大尺寸高精度绝对测距的新方法, 结合基于双光梳互相关的多外差距离测量和基于重复频率的梳间拍频距离测量, 在不需要依靠脉冲飞行时间先验判断以及扫描重复频率或扫描参考光路的前提下实现km量程高精度绝对测距. 文章在光梳基本原理和测距方案的基础上, 建立了基于双光梳的大尺寸距离测量链理论模型, 讨论了多外差最低谱线和光梳重复频率稳定度对测量结果的影响, 并进行了大量仿真计算; 仿真结果表明, 在理想相位解调精度的前提下, 该方法的测距误差优于± 50 pm, 且多外差最低谱线的频率偏差对测距造成的影响远低于多外差测量的测距分辨力, 验证了该方法能够用于开展大尺寸高精度绝对测距研究.
    Femtosecond optical frequency comb (FOFC) has been widely used in time-frequency technique and precision spectral measurement. The derivative technique for absolute distance measurement by FOFC, which has features of high-speed, large-scale and high-precision, has become a worldwide research hotspot and is promising to be directly applied in some precision ranging missions, such as large equipment manufacturing, satellites formation flying, laser radar and space gravitation measurement, etc. An innovative method for large-scale and high-precision absolute distance measurement based on multi-heterodyne of dual FOFCs, is proposed in this paper. This method combines the multi-heterodyne cross-correlation distance measurement of dual optical combs with the beat-frequency distance measurement based on repetition frequency of the comb, so that it achieves large-scale and high-precision absolute distance measurement without relying on the earlier judgment with time-of-flight measurement, scanning the repetition frequency or scanning the reference beam path. Based on the basic theory of FOFC and the ranging scheme, the theoretical model for large scale distance measurement chain based on dual FOFCs has been constructed; influence of the multi-heterodyne lowest spectral lines and the repetition frequency stability on the measurement results has been discussed, and lots of simulation calculations have been done. Simulation results show that the method has achieved measurement errors better than ± 50 pm on the premise of not considering the phase demodulation accuracy, and the impact caused by the deviation of the lowest multi-heterodyne spectrum is figured out to be far below the ranging resolution of the multi-heterodyne measurement, which has verified that the proposed method may be used to realize large-scale and high-precision absolute distance measurement.
    • 基金项目: 国家自然科学基金(批准号: 51275523)、国防科技大学优秀研究生创新项目(批准号: B120305)和湖南省研究生科研创新项目(批准号: CX2012B015)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275523), the Excellent Graduate Innovative Fund of NUDT (Grant No. B120305), and the Graduate Innovative Research Fund of Hunan Province (Grant No. CX2012B015).
    [1]

    Shelus P J 2001 Surveys in Geophysics 22 517

    [2]

    Peggs G N, Maropoulos P G, Hughes E B, Forbes A B, Robson S, Ziebart M, Muralikrishnan B 2009 Proc. IMechE 223 571

    [3]

    Kopeikin S M, Pavlis E, Pavlis D, Brumberg V A, Escapa A, Getino J, Gusev A, Muller J, Ni W T, Petrova N 2008 Advances in Space Research 42 1378

    [4]

    Battat J B R, Chandler J F, Stubbs C W 2007 Phys. Rev. Lett. 99 241103

    [5]

    Keem T, Gonda S, Misumi I, Huang Q X, Kurosawa T 2004 Applied Optics 43 2443

    [6]

    Kim J W, Kang C S, Kim J A, Eom T, Cho M J, Kong H J 2007 Optics Express 15 15759

    [7]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [8]

    Hall J L 2006 Reviews of Modern Physics 78 1279

    [9]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 6 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 60 100601]

    [10]

    Nathan R N 2011 nature photonics 5 186

    [11]

    Hall J L 2011 Phil. Trans. R. Soc. A 369 4090

    [12]

    Kim S W 2009 Nature Photonics 3 313

    [13]

    Minoshima K, Matsumoto H 2000 Applied Optics 39 5512

    [14]

    Scott A. Diddams 2010 J. Opt. Soc. Am. B 27 B51

    [15]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 61 134205]

    [16]

    Schliesser A, Picqué N, Hänsch T W 2012 Nature Photonics 6 440

    [17]

    Kim S M, Kim Y S, Park J Y, Han S Y, Park S, Kim Y J, Kim S W 2012 Optics Express 20 15054

    [18]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2012 60 100601]

    [19]

    Ye J 2004 Optics Letters 29 1153

    [20]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2011 Optics Express 19 4881

    [21]

    Nicolas S, Yves S 2006 Optics Letters 31 3101

    [22]

    Joo K N, Kim S W 2006 Optics Express 14 5954

    [23]

    Berg S A, Persijn S T, Kok G J P 2012 Phys. Rev. Lett. 108 183901

    [24]

    Coddington I, Swann W C, Nenadovic L 2009 Nature Photonics 3 351

    [25]

    Lee J, Kim Y, Lee K 2010 Nature Photonics 4 716

    [26]

    Joo K N, Kim Y, Kim S W 2008 Optics Express 16 19799

    [27]

    Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760 (in Chinese) [韩海年, 张炜, 王鹏, 李德华, 魏志义, 沈乃, 聂玉昕, 高玉平, 张首刚, 李师群 2007 56 2760]

    [28]

    Ye J, Cundiff S T 2004 Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (1st Ed.) (Springer Norwell, MA) p11

    [29]

    Zhang W, Han H N, Teng H, Wei Z Y 2009 Chin. Phys. B 18 1105

    [30]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2009 Optics Express 17 7011

    [31]

    Shuko Y, Toshiyuki Y, Yuki H, Tsutomu A, Takeshi Y 2009 Optics Express 17 17324

    [32]

    Zhang J T, Wu X J Li Y Wei H Y 2012 Acta Phys. Sin. 61 100601 (in Chinese) [张继涛, 吴学健, 李岩, 尉昊赟 2012 61 100601]

  • [1]

    Shelus P J 2001 Surveys in Geophysics 22 517

    [2]

    Peggs G N, Maropoulos P G, Hughes E B, Forbes A B, Robson S, Ziebart M, Muralikrishnan B 2009 Proc. IMechE 223 571

    [3]

    Kopeikin S M, Pavlis E, Pavlis D, Brumberg V A, Escapa A, Getino J, Gusev A, Muller J, Ni W T, Petrova N 2008 Advances in Space Research 42 1378

    [4]

    Battat J B R, Chandler J F, Stubbs C W 2007 Phys. Rev. Lett. 99 241103

    [5]

    Keem T, Gonda S, Misumi I, Huang Q X, Kurosawa T 2004 Applied Optics 43 2443

    [6]

    Kim J W, Kang C S, Kim J A, Eom T, Cho M J, Kong H J 2007 Optics Express 15 15759

    [7]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [8]

    Hall J L 2006 Reviews of Modern Physics 78 1279

    [9]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 6 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 60 100601]

    [10]

    Nathan R N 2011 nature photonics 5 186

    [11]

    Hall J L 2011 Phil. Trans. R. Soc. A 369 4090

    [12]

    Kim S W 2009 Nature Photonics 3 313

    [13]

    Minoshima K, Matsumoto H 2000 Applied Optics 39 5512

    [14]

    Scott A. Diddams 2010 J. Opt. Soc. Am. B 27 B51

    [15]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 61 134205]

    [16]

    Schliesser A, Picqué N, Hänsch T W 2012 Nature Photonics 6 440

    [17]

    Kim S M, Kim Y S, Park J Y, Han S Y, Park S, Kim Y J, Kim S W 2012 Optics Express 20 15054

    [18]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2012 60 100601]

    [19]

    Ye J 2004 Optics Letters 29 1153

    [20]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2011 Optics Express 19 4881

    [21]

    Nicolas S, Yves S 2006 Optics Letters 31 3101

    [22]

    Joo K N, Kim S W 2006 Optics Express 14 5954

    [23]

    Berg S A, Persijn S T, Kok G J P 2012 Phys. Rev. Lett. 108 183901

    [24]

    Coddington I, Swann W C, Nenadovic L 2009 Nature Photonics 3 351

    [25]

    Lee J, Kim Y, Lee K 2010 Nature Photonics 4 716

    [26]

    Joo K N, Kim Y, Kim S W 2008 Optics Express 16 19799

    [27]

    Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760 (in Chinese) [韩海年, 张炜, 王鹏, 李德华, 魏志义, 沈乃, 聂玉昕, 高玉平, 张首刚, 李师群 2007 56 2760]

    [28]

    Ye J, Cundiff S T 2004 Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (1st Ed.) (Springer Norwell, MA) p11

    [29]

    Zhang W, Han H N, Teng H, Wei Z Y 2009 Chin. Phys. B 18 1105

    [30]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2009 Optics Express 17 7011

    [31]

    Shuko Y, Toshiyuki Y, Yuki H, Tsutomu A, Takeshi Y 2009 Optics Express 17 17324

    [32]

    Zhang J T, Wu X J Li Y Wei H Y 2012 Acta Phys. Sin. 61 100601 (in Chinese) [张继涛, 吴学健, 李岩, 尉昊赟 2012 61 100601]

  • [1] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器.  , 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [2] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统.  , 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [3] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距.  , 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [4] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距.  , 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [5] 王国超, 李星辉, 颜树华, 谭立龙, 管文良. 基于飞秒光梳多路同步锁相的多波长干涉实时绝对测距及其非模糊度量程分析.  , 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [6] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术.  , 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [7] 姜海峰. 超稳光生微波源研究进展.  , 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [8] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法.  , 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [9] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响.  , 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [10] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法.  , 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系.  , 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [12] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量.  , 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [13] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器.  , 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [14] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性.  , 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [15] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究.  , 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [16] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现.  , 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [17] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究.  , 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [18] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究.  , 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [19] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究.  , 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [20] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量.  , 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
计量
  • 文章访问数:  8094
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-25
  • 修回日期:  2012-12-03
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map