-
在低于一个标准大气压的条件下对飞秒激光产生的N2等离子体光谱进行了实验研究.结果表明, 各种样品气压下的激光N2等离子体光谱均表现为连续谱和线状谱的叠加.随着样品气压的降低, 连续谱和原子谱线的强度经历了由缓慢增强发展为缓慢降低再到迅速降低的过程, 而正一价离子谱线强度呈现逐步增强的特征.在气压低于0.3 atm (1 atm=101325 Pa)时, 出现了正二价态的离子谱线. 给出了低压N2等离子体对于飞秒激光传输和能量吸收的物理特性, 并初步讨论了低压等离子体通道特性.这些结果有助于加深了解飞秒激光等离子体的特性和机理, 特别是给出了在实验上测量不同价态离子光谱的条件, 为今后的研究提供了有益的实验依据.The spectra of N2 plasma induced by a femtosecond pulsed laser are studied experimentally at sub-atmospheric pressure. The results show that the spectra of laser-induced plasmas for all sample pressures are composed of continuous spectra and line spectra. As the sample pressure is reduced the intensities of continuous spectra undergo the transition from slow increase to rapid decrease; on the other hand, the intensities of N+ spectra increase significantly with the decrease of pressure. The spectra of N++ species are observed when the pressure is lower than 0.3 atm. The behaviors of the femtosecond laser propagation and energy absorption in N2 plasma at sub-atmospheric pressure are also given and the feature of the laser-induced plasma channel is briefly discussed. These results are helpful for better understanding the laser-induced plasma characteristics, especially provide the clue to the experimental measurement conditions for different charged species, which is useful for the future corresponding experimental research.
-
Keywords:
- femtosecond laser pulses /
- pressure /
- plasma spectra /
- laser propagation
[1] Meyand R G, Hanght A F 1963 Phys. Rev. Lett. 11 401
[2] Brown R T, Smith D C 1973 Appl. Phys. Lett. 22 245
[3] Miziolek A, Palleschi V, Schechter I 2006 Laser-induced Breakdown Spectroscopy (New York: Cambridge University) p171
[4] Turcu I C E, Gower M C, Huntington P 1996 Opt. Commun. 134 66
[5] Phuoc T X 2000 Opt. Commun. 175 419
[6] Yalcin S, Crosley D R, Smith G P, Faris G W 1999 Appl. Phys. B 68 121
[7] Hahn D W 1998 Phys. Rev. Lett. 72 2960
[8] Stancu G D, Kaddouri F, Lacoste D A, Laux C O 2010 J. Phys. D: Appl. Phys. 43 124002
[9] Sattmann R, Monch I, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanklakis A, Fotakis C, Larrauri E, Miguel R 1998 Appl. Spectrosc. 52 456
[10] Rusak D A, Castle B C, Smith B W 1997 Crit. Rev. Anal. Chem. 27 257
[11] Liu Z Y, Ding P J, Shi Y C, Lu X, Sun S H, Liu X L, Liu Q C, Ding B W, Hu B T 2012 Opt. Express 20 8837
[12] Bindhu C V, Harilal S S, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 94 7402
[13] Glumac N, Elliott G 2007 Opt. Laser Eng. 45 7
[14] Wang X L, Zhang N, Zhao Y B, Li Z L, Zhai H C, Zhu X N 2008 Acta Phys. Sin. 57 354 (in Chinese) [王晓雷, 张楠, 赵友博, 李智磊, 翟宏琛, 朱晓农 2008 57 354]
[15] Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205 (in Chinese) [朱竹青, 王晓雷 2011 60 085205]
[16] Guo K M, Gao X, Hao Z Q, Lu Y, Sun C K, Lin J Q 2012 Acta Phys. Sin. 61 075212 (in Chinese) [郭凯敏, 高勋, 郝作强, 鲁毅, 孙长凯, 林景全 2012 61 075212]
[17] Li X Y, Lin Z X, Liu Y Y, Chen Y Q, Gong S S 2004 Acta Opt. Sin. 24 1051 (in Chinese) [李小银, 林兆祥, 刘煜炎, 陈扬锓, 龚顺生 2004 光学学报 24 1051]
[18] Lin Z X, Wu J Q, Gong S S 2006 Acta Phys. Sin. 55 5892 (in Chinese) [林兆祥, 吴金泉, 龚顺生 2006 55 5892]
[19] Dyachkov L G, Golubev O A, Kobzev G A, Vargin A N 1978 J. Quant. Spectrosc. Radiat. Transfer. 20 175
[20] Armstrong R A, Lucht R A, Rawlins W T 1983 Appl. Opt. 22 1573
-
[1] Meyand R G, Hanght A F 1963 Phys. Rev. Lett. 11 401
[2] Brown R T, Smith D C 1973 Appl. Phys. Lett. 22 245
[3] Miziolek A, Palleschi V, Schechter I 2006 Laser-induced Breakdown Spectroscopy (New York: Cambridge University) p171
[4] Turcu I C E, Gower M C, Huntington P 1996 Opt. Commun. 134 66
[5] Phuoc T X 2000 Opt. Commun. 175 419
[6] Yalcin S, Crosley D R, Smith G P, Faris G W 1999 Appl. Phys. B 68 121
[7] Hahn D W 1998 Phys. Rev. Lett. 72 2960
[8] Stancu G D, Kaddouri F, Lacoste D A, Laux C O 2010 J. Phys. D: Appl. Phys. 43 124002
[9] Sattmann R, Monch I, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanklakis A, Fotakis C, Larrauri E, Miguel R 1998 Appl. Spectrosc. 52 456
[10] Rusak D A, Castle B C, Smith B W 1997 Crit. Rev. Anal. Chem. 27 257
[11] Liu Z Y, Ding P J, Shi Y C, Lu X, Sun S H, Liu X L, Liu Q C, Ding B W, Hu B T 2012 Opt. Express 20 8837
[12] Bindhu C V, Harilal S S, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 94 7402
[13] Glumac N, Elliott G 2007 Opt. Laser Eng. 45 7
[14] Wang X L, Zhang N, Zhao Y B, Li Z L, Zhai H C, Zhu X N 2008 Acta Phys. Sin. 57 354 (in Chinese) [王晓雷, 张楠, 赵友博, 李智磊, 翟宏琛, 朱晓农 2008 57 354]
[15] Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205 (in Chinese) [朱竹青, 王晓雷 2011 60 085205]
[16] Guo K M, Gao X, Hao Z Q, Lu Y, Sun C K, Lin J Q 2012 Acta Phys. Sin. 61 075212 (in Chinese) [郭凯敏, 高勋, 郝作强, 鲁毅, 孙长凯, 林景全 2012 61 075212]
[17] Li X Y, Lin Z X, Liu Y Y, Chen Y Q, Gong S S 2004 Acta Opt. Sin. 24 1051 (in Chinese) [李小银, 林兆祥, 刘煜炎, 陈扬锓, 龚顺生 2004 光学学报 24 1051]
[18] Lin Z X, Wu J Q, Gong S S 2006 Acta Phys. Sin. 55 5892 (in Chinese) [林兆祥, 吴金泉, 龚顺生 2006 55 5892]
[19] Dyachkov L G, Golubev O A, Kobzev G A, Vargin A N 1978 J. Quant. Spectrosc. Radiat. Transfer. 20 175
[20] Armstrong R A, Lucht R A, Rawlins W T 1983 Appl. Opt. 22 1573
计量
- 文章访问数: 7741
- PDF下载量: 623
- 被引次数: 0