搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类三次方对称离散混沌系统的分岔控制

张惠 褚衍东 丁旺才 李险峰

引用本文:
Citation:

一类三次方对称离散混沌系统的分岔控制

张惠, 褚衍东, 丁旺才, 李险峰

Bifurcation control of a cubic symmetry discrete chaotic system

Zhang Hui, Chu Yan-Dong, Ding Wang-Cai, Li Xian-Feng
PDF
导出引用
  • 通过分析对称性破缺分岔机制, 采用了一个直接的、有效的线性控制器, 精确控制了一类三次方对称离散混沌系统发生对称性破缺分岔和倍周期分岔时分岔点的位置. 进而分析了系统对初始值的敏感性和对称性, 选择合适的吸引域, 将对称性破缺分岔进行进一步控制, 从而使得对称性破缺分岔所缺解枝得以恢复. 数值结果表明了该控制器的有效性.
    A direct and effective linear-controller is employed to exactly control the locations of bifurcation points, both the symmetry-breaking bifurcation and the period-doubling bifurcation, in a cubic symmetry discrete system. Moreover, both the sensibility and the symmetry to the initial values of the system are analyzed. The lack of the solution branches due to the symmetry-breaking bifurcation can be reinstated temporarily by selecting the corresponding basins of attraction. The effectiveness of the controller is verified by numerical simulations.
    • 基金项目: 国家自然科学基金(批准号:11161027,11162007)、甘肃省自然科学重点基金(批准号:1010RJZA067)和兰州交通大学青年科学基金(批准号:2011026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11161027, 11162007), the Key Foundation of Natural Science of Gansu Province, China (Grant No. 1010RJZA067), and the Young Scholars Science Foundation of Lanzhou Jiaotong University, China (Grant No. 2011026).
    [1]

    Chen G, Morola J L, Wang H O 2000 Int. J. Bif. Chaos 10 511

    [2]

    Chen G, Hill D J, Yu X H 2003 Bifurcation Control: Theory and Applications (Berlin: Springer) pp1-327

    [3]

    Harb A M, Zohdy M A 2002 Nonlin. Anal. 7 37

    [4]

    Wang H O, Abed E G 1995 Automatica 31 1213

    [5]

    Liu S H, Tang J S 2008 Acta Phys. Sin. 57 6162 (in Chinese) [刘素华, 唐驾时 2008 57 6162]

    [6]

    Chen D, Wang H O, Chen G 2001 IEEE Trans. Circuits Syst. I 48 661

    [7]

    L Z S, Duan L X 2009 Chin. Phys. Lett. 26 050504

    [8]

    Ma W, Wang M Y, Nie H L 2011 Acta Phys. Sin. 60 100202 (in Chinese) [马伟, 王明渝, 聂海龙 2011 60 100202]

    [9]

    Fu W B, Tang J S 2004 Acta Phys. Sin. 53 2889 (in Chinese) [符文斌, 唐驾时 2004 53 2889]

    [10]

    Abed F H, Wang H O, Chen R C 1994 Physica D 70 154

    [11]

    Tang J S, Ouyang K J 2006 Acta Phys. Sin. 55 4438 (in Chinese) [唐驾时, 欧阳克俭 2006 55 4438]

    [12]

    Tang J S, Zhao M H, Han F, Zhang L 2011 Chin. Phys. B 20 020504

    [13]

    Xiao M, Cao J D 2007 J. Math. Anal. Appl. 332 1010

    [14]

    Liang C X, Tang J S 2008 Chin. Phys. B 17 135

    [15]

    Jiang G R, Xu B G, Yang Q G 2009 Chin. Phys. B 18 5235

    [16]

    Lu W G, Xu P Y, Zhou L W, Luo Q M 2010 Chin. Phys. Lett. 27 030501

    [17]

    Zong X P, Geng J, Wang P G 2011 Infom. Control 40 343 (in Chinese) [宗晓萍, 耿军, 王培光 2011 信息与控制 40 343]

    [18]

    Wu Z Q, Sun L M 2011 Acta Phys. Sin. 60 050504 (in Chinese) [吴志强, 孙立明 2011 60 050504]

    [19]

    Yu P, Chen G 2004 Int. J. Bif. Chaos 14 1683

    [20]

    Huang Q W, Tang J S 2011 Commun. Theor. Phys. 55 685

    [21]

    Qian C Z, Tang J S 2006 Acta Phys. Sin. 55 617 (in Chinese) [钱长照, 唐驾时 2006 55 617]

    [22]

    Luo X S, Chen G R, Wang B H, Fang J Q, Zou Y L, Quan H J 2003 Acta Phys. Sin. 52 790 (in Chinese) [罗晓曙, 陈关荣, 汪秉宏, 方锦清, 邹艳丽, 全宏俊 2003 52 790]

    [23]

    Xiao H, Tang J S, Liang C X 2009 Acta Phys. Sin. 58 2989 (in Chinese) [萧寒, 唐驾时, 梁翠香 2009 58 2989]

    [24]

    Leung A Y T, Ji J C, Chen G R 2004 Int. J. Bif. Chaos 14 1423

    [25]

    Ji J C, Leung A Y T 2002 Nonlin. Dyna. 27 411

    [26]

    Ji J C 2001 Nonlin. Dyn. 25 369

    [27]

    Ouyang K J, Tang J S, Liang C X 2009 Chin. Phys. 18 4748

    [28]

    Liu S, Liu H R, Wen Y, Liu B 2010 Acta Phys. Sin. 59 5223 (in Chinese) [刘爽, 刘浩然, 闻岩, 刘彬 2010 59 5223]

    [29]

    Yu P, L J H 2011 Int. J. Bif. Chaos 21 2647

    [30]

    Field M, Golubitsky M 1992 Symmetry in Chaos: A Search for Pattern in Mathematics, Art and Nature (2nd Ed.) (Oxford: Oxford University Press) p27

    [31]

    Zou F F 2006 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [邹芳芳 2006 硕士学位论文 (大连: 大连理工大学)]

    [32]

    Zhang Y, Lei Y M, Fang T 2009 Acta Phys. Sin. 58 3799 (in Chinese) [张莹, 雷佑铭, 方同 2009 58 3799]

    [33]

    Chossat P, Golubitsky M 1988 Physica D 32 423

    [34]

    Lai Y C 1996 Phys. Rev. E 53 57

    [35]

    Szabo K G, Tel T 1989 J. Stat. Phys. 54 925

    [36]

    Attili B S 1993 J. Austral. Math. Soc. B 35 103

    [37]

    Werner B, Spence A 1984 SIAM J. Numer. Anal. 21 388

    [38]

    Bishop S R, Sofroniou A, Shi P L 2005 Chaos Soliton. Fract. 25 257

    [39]

    Wang X Y, Meng Q Y 2004 Acta Phys. Sin. 53 388 (in Chinese) [王兴元, 孟庆业 2004 53 388]

    [40]

    Wang X Y 2003 Chaos in the Complex Nonlinear System (Beijing: Electronics Industry Press) pp41-42 (in Chinese) [王兴元 2003 复杂非线性系统中的混沌 (北京: 电子工业出版社) 第41–42页]

    [41]

    Liu S, Che X J, Wang Z X 2011 J. Comp. 6 1648

    [42]

    Li X F, Chu Y D, Zhang H 2012 Chin. Phys. B 21 030203

    [43]

    Li X F, Leung A Y T, Chu Y D 2012 Chin. Phys. Lett. 29 010201

  • [1]

    Chen G, Morola J L, Wang H O 2000 Int. J. Bif. Chaos 10 511

    [2]

    Chen G, Hill D J, Yu X H 2003 Bifurcation Control: Theory and Applications (Berlin: Springer) pp1-327

    [3]

    Harb A M, Zohdy M A 2002 Nonlin. Anal. 7 37

    [4]

    Wang H O, Abed E G 1995 Automatica 31 1213

    [5]

    Liu S H, Tang J S 2008 Acta Phys. Sin. 57 6162 (in Chinese) [刘素华, 唐驾时 2008 57 6162]

    [6]

    Chen D, Wang H O, Chen G 2001 IEEE Trans. Circuits Syst. I 48 661

    [7]

    L Z S, Duan L X 2009 Chin. Phys. Lett. 26 050504

    [8]

    Ma W, Wang M Y, Nie H L 2011 Acta Phys. Sin. 60 100202 (in Chinese) [马伟, 王明渝, 聂海龙 2011 60 100202]

    [9]

    Fu W B, Tang J S 2004 Acta Phys. Sin. 53 2889 (in Chinese) [符文斌, 唐驾时 2004 53 2889]

    [10]

    Abed F H, Wang H O, Chen R C 1994 Physica D 70 154

    [11]

    Tang J S, Ouyang K J 2006 Acta Phys. Sin. 55 4438 (in Chinese) [唐驾时, 欧阳克俭 2006 55 4438]

    [12]

    Tang J S, Zhao M H, Han F, Zhang L 2011 Chin. Phys. B 20 020504

    [13]

    Xiao M, Cao J D 2007 J. Math. Anal. Appl. 332 1010

    [14]

    Liang C X, Tang J S 2008 Chin. Phys. B 17 135

    [15]

    Jiang G R, Xu B G, Yang Q G 2009 Chin. Phys. B 18 5235

    [16]

    Lu W G, Xu P Y, Zhou L W, Luo Q M 2010 Chin. Phys. Lett. 27 030501

    [17]

    Zong X P, Geng J, Wang P G 2011 Infom. Control 40 343 (in Chinese) [宗晓萍, 耿军, 王培光 2011 信息与控制 40 343]

    [18]

    Wu Z Q, Sun L M 2011 Acta Phys. Sin. 60 050504 (in Chinese) [吴志强, 孙立明 2011 60 050504]

    [19]

    Yu P, Chen G 2004 Int. J. Bif. Chaos 14 1683

    [20]

    Huang Q W, Tang J S 2011 Commun. Theor. Phys. 55 685

    [21]

    Qian C Z, Tang J S 2006 Acta Phys. Sin. 55 617 (in Chinese) [钱长照, 唐驾时 2006 55 617]

    [22]

    Luo X S, Chen G R, Wang B H, Fang J Q, Zou Y L, Quan H J 2003 Acta Phys. Sin. 52 790 (in Chinese) [罗晓曙, 陈关荣, 汪秉宏, 方锦清, 邹艳丽, 全宏俊 2003 52 790]

    [23]

    Xiao H, Tang J S, Liang C X 2009 Acta Phys. Sin. 58 2989 (in Chinese) [萧寒, 唐驾时, 梁翠香 2009 58 2989]

    [24]

    Leung A Y T, Ji J C, Chen G R 2004 Int. J. Bif. Chaos 14 1423

    [25]

    Ji J C, Leung A Y T 2002 Nonlin. Dyna. 27 411

    [26]

    Ji J C 2001 Nonlin. Dyn. 25 369

    [27]

    Ouyang K J, Tang J S, Liang C X 2009 Chin. Phys. 18 4748

    [28]

    Liu S, Liu H R, Wen Y, Liu B 2010 Acta Phys. Sin. 59 5223 (in Chinese) [刘爽, 刘浩然, 闻岩, 刘彬 2010 59 5223]

    [29]

    Yu P, L J H 2011 Int. J. Bif. Chaos 21 2647

    [30]

    Field M, Golubitsky M 1992 Symmetry in Chaos: A Search for Pattern in Mathematics, Art and Nature (2nd Ed.) (Oxford: Oxford University Press) p27

    [31]

    Zou F F 2006 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [邹芳芳 2006 硕士学位论文 (大连: 大连理工大学)]

    [32]

    Zhang Y, Lei Y M, Fang T 2009 Acta Phys. Sin. 58 3799 (in Chinese) [张莹, 雷佑铭, 方同 2009 58 3799]

    [33]

    Chossat P, Golubitsky M 1988 Physica D 32 423

    [34]

    Lai Y C 1996 Phys. Rev. E 53 57

    [35]

    Szabo K G, Tel T 1989 J. Stat. Phys. 54 925

    [36]

    Attili B S 1993 J. Austral. Math. Soc. B 35 103

    [37]

    Werner B, Spence A 1984 SIAM J. Numer. Anal. 21 388

    [38]

    Bishop S R, Sofroniou A, Shi P L 2005 Chaos Soliton. Fract. 25 257

    [39]

    Wang X Y, Meng Q Y 2004 Acta Phys. Sin. 53 388 (in Chinese) [王兴元, 孟庆业 2004 53 388]

    [40]

    Wang X Y 2003 Chaos in the Complex Nonlinear System (Beijing: Electronics Industry Press) pp41-42 (in Chinese) [王兴元 2003 复杂非线性系统中的混沌 (北京: 电子工业出版社) 第41–42页]

    [41]

    Liu S, Che X J, Wang Z X 2011 J. Comp. 6 1648

    [42]

    Li X F, Chu Y D, Zhang H 2012 Chin. Phys. B 21 030203

    [43]

    Li X F, Leung A Y T, Chu Y D 2012 Chin. Phys. Lett. 29 010201

  • [1] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象.  , 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [2] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究.  , 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [3] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究.  , 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [4] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究.  , 2021, (): . doi: 10.7498/aps.70.20211607
    [5] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动.  , 2019, 68(16): 161101. doi: 10.7498/aps.68.20190425
    [6] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模.  , 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [7] 朱霖河, 赵洪涌. 时滞惯性神经网络的稳定性和分岔控制.  , 2014, 63(9): 090203. doi: 10.7498/aps.63.090203
    [8] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证.  , 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
    [9] 孙克辉, 贺少波, 尹林子, 阿地力·多力坤. 模糊熵算法在混沌序列复杂度分析中的应用.  , 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [10] 吴军科, 周雒维, 卢伟国. 电压型逆变器的通用分岔控制策略研究.  , 2012, 61(21): 210202. doi: 10.7498/aps.61.210202
    [11] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变.  , 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [12] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象.  , 2009, 58(6): 3772-3779. doi: 10.7498/aps.58.3772
    [13] 孙晓娟, 徐 伟, 马少娟. 含有界随机参数的双势阱Duffing-van der Pol系统的倍周期分岔.  , 2006, 55(2): 610-616. doi: 10.7498/aps.55.610
    [14] 冯进钤, 徐 伟, 王 蕊. 随机Duffing单边约束系统的倍周期分岔.  , 2006, 55(11): 5733-5739. doi: 10.7498/aps.55.5733
    [15] 钱长照, 唐驾时. 一类非自治时滞反馈系统的分岔控制.  , 2006, 55(2): 617-621. doi: 10.7498/aps.55.617
    [16] 唐驾时, 欧阳克俭. logistic模型的倍周期分岔控制.  , 2006, 55(9): 4437-4441. doi: 10.7498/aps.55.4437
    [17] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析.  , 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [18] 符文彬, 唐驾时. 基于状态反馈参数激励系统的超谐共振分岔控制.  , 2004, 53(9): 2889-2893. doi: 10.7498/aps.53.2889
    [19] 罗晓曙, 陈关荣, 汪秉宏, 方锦清, 邹艳丽, 全宏俊. 状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌.  , 2003, 52(4): 790-794. doi: 10.7498/aps.52.790
    [20] 王运祥, 和永寿, 彭守礼. 频率扫描法研究倍周期分岔与混沌现象.  , 1984, 33(5): 671-677. doi: 10.7498/aps.33.671
计量
  • 文章访问数:  7595
  • PDF下载量:  871
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-05
  • 修回日期:  2012-09-26
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map