-
采用三维粒子模拟/蒙特卡洛模型自洽地模拟了增强辉光放电等离子体离子注入过程中离子产生和注入,获得了放电空间的离子总数、电势分布、等离子体密度分布和离子入射剂量等信息.模拟结果表明, 5 μs时鞘层达到稳定扩展, 15 μs时离子的产生与注入达到平衡, 证实了增强辉光放电等离子体离子注入能在一定条件下实现自持的辉光放电. 注入过程中,在点状阳极正下方存在一个高密度的等离子体区域,证实了电子聚焦效应. 除靶台边缘外,离子的注入速率稳定且入射剂量均匀.脉冲负偏压提高时注入速率增加但入射剂量的均匀性变差.
-
关键词:
- 三维粒子模拟 /
- 蒙特卡洛 /
- 等离子体浸没离子注入 /
- 数值模拟
Enhanced glow discharge plasma immersion ion implantation is self-consistently simulated using a three-dimensional PIC/MC model. The information about ion counts, space potential, plasma density and ion incident dose is obtained. The results show that the sheath has fully expanded at 5 μs. There is a stable equilibrium of ion counts at 15 μs, which corroborates the characteristic of self-sustaining glow discharge of EGD-PIII. In the space just below anode where is found a highest plasma density, verifying the electron focusing effect. The rate of implantation is steady and the incident dose is relatively uniform except at the rim of target. A higher pulse negative bias may increase the injection rate but reduce the dose uniformity at the same time.-
Keywords:
- three-dimensional particle-in-cell /
- Monte Carlo /
- plasma immersion ion implantation /
- numerical simulation
[1] Conrad J R, Radtke J L, Dodd R A, Worzala F G, Tran N C 1987 J. Appl. Phys. 62 4591
[2] Tendys J, Donnelly I J, Kenny M J, Pollock J T A 1988 Appl. Phys. Lett. 53 2143
[3] Li X C, Wang Y N 2004 Acta Phys. Sin. 53 2667 (in Chinese) [李雪春, 王友年 2004 53 2666]
[4] Chu P K 2004 J. Vac. Sci. Technol. B 22 289
[5] Walter K C 1994 J. Vac. Sci. Technol. B 12 945
[6] Li L H, Chu P K 2007 Surf. Coat. Technol. 201 6516
[7] Chu P K, Li L H U.S. Patent 8 119 208 B2 [2012-02-21]
[8] Li L H, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H 2003 Rev. Sci. Instrum. 74 4301
[9] Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 Phys. Lett. A 372 6183
[10] Li L H ,Wu Y Q, Zhang Y H, Fu R K Y, Chu P K 2005 J. Appl. Phys. 97 113301
[11] Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2009 Appl. Phys. Lett. 95 061503
[12] Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 J. Appl. Phys. 104 043303
[13] Li L H, Lu Q Y, Fu R K Y, Chu P K 2009 Nucl. Instrum. Methods. Phys. Res. Sect. B 267 1696
[14] Lu Q Y, Wang Z, Li L H, Fu R K Y, Chu P K 2010 J. Appl. Phys. 108 033304
[15] Wang Z, Zhu Y, Li L H, Lu Q Y, He F S, Dun D D, Li F, Fu R K Y, Chu P K 2011 Riew. Sci. Instrum. 82 023503
[16] Kwok D T K, Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2008 Appl. Phys. Lett. 93 091501
[17] Li L H, Li J H, Kwok D T K, Wang Z, Chu P K 2009 J. Appl. Phys. 106 013313
[18] En W, Cheung N W 1996 IEEE. Trans. Plasma Sci. 24 1184
[19] Kwok DTK, Li J H, Ma X B, Chu P K 2010 J. Phys. D: Appl. Phys. 43 095203
[20] Wang P, Tian X B, Wang Z J, Gong C Z , Y S Q 2011 Acta Phys. Sin. 60 085206 (in Chinese) [王蓬, 田修波, 汪志健, 巩春志, 杨士勤 2011 60 085206]
[21] Kwok D T K 2006 IEEE. Trans. Plasma. Sci. 34 1059
[22] Shao F Q 2002 Plasma Particle Simulation (Beijing: Science Press) p28 (in Chinese) [邵福球 2002 等离子体粒子模拟 (北京:科学出版社) 第28页]
[23] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G Acta Phys. Sin. 61 045204 (in Chinese) [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛刚 2012 61 045204]
[24] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
[25] Brusa R S, Karwasz G P, Zecca A 1996 Z. Phys. D: At. Mol. Clusters. 38 279
[26] Li L H, Fu R K Y, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H, Cai X, Chen Q L, Xu M 2004 Surf. Coat. Technol. 186 165
-
[1] Conrad J R, Radtke J L, Dodd R A, Worzala F G, Tran N C 1987 J. Appl. Phys. 62 4591
[2] Tendys J, Donnelly I J, Kenny M J, Pollock J T A 1988 Appl. Phys. Lett. 53 2143
[3] Li X C, Wang Y N 2004 Acta Phys. Sin. 53 2667 (in Chinese) [李雪春, 王友年 2004 53 2666]
[4] Chu P K 2004 J. Vac. Sci. Technol. B 22 289
[5] Walter K C 1994 J. Vac. Sci. Technol. B 12 945
[6] Li L H, Chu P K 2007 Surf. Coat. Technol. 201 6516
[7] Chu P K, Li L H U.S. Patent 8 119 208 B2 [2012-02-21]
[8] Li L H, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H 2003 Rev. Sci. Instrum. 74 4301
[9] Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 Phys. Lett. A 372 6183
[10] Li L H ,Wu Y Q, Zhang Y H, Fu R K Y, Chu P K 2005 J. Appl. Phys. 97 113301
[11] Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2009 Appl. Phys. Lett. 95 061503
[12] Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 J. Appl. Phys. 104 043303
[13] Li L H, Lu Q Y, Fu R K Y, Chu P K 2009 Nucl. Instrum. Methods. Phys. Res. Sect. B 267 1696
[14] Lu Q Y, Wang Z, Li L H, Fu R K Y, Chu P K 2010 J. Appl. Phys. 108 033304
[15] Wang Z, Zhu Y, Li L H, Lu Q Y, He F S, Dun D D, Li F, Fu R K Y, Chu P K 2011 Riew. Sci. Instrum. 82 023503
[16] Kwok D T K, Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2008 Appl. Phys. Lett. 93 091501
[17] Li L H, Li J H, Kwok D T K, Wang Z, Chu P K 2009 J. Appl. Phys. 106 013313
[18] En W, Cheung N W 1996 IEEE. Trans. Plasma Sci. 24 1184
[19] Kwok DTK, Li J H, Ma X B, Chu P K 2010 J. Phys. D: Appl. Phys. 43 095203
[20] Wang P, Tian X B, Wang Z J, Gong C Z , Y S Q 2011 Acta Phys. Sin. 60 085206 (in Chinese) [王蓬, 田修波, 汪志健, 巩春志, 杨士勤 2011 60 085206]
[21] Kwok D T K 2006 IEEE. Trans. Plasma. Sci. 34 1059
[22] Shao F Q 2002 Plasma Particle Simulation (Beijing: Science Press) p28 (in Chinese) [邵福球 2002 等离子体粒子模拟 (北京:科学出版社) 第28页]
[23] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G Acta Phys. Sin. 61 045204 (in Chinese) [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛刚 2012 61 045204]
[24] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
[25] Brusa R S, Karwasz G P, Zecca A 1996 Z. Phys. D: At. Mol. Clusters. 38 279
[26] Li L H, Fu R K Y, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H, Cai X, Chen Q L, Xu M 2004 Surf. Coat. Technol. 186 165
计量
- 文章访问数: 9212
- PDF下载量: 577
- 被引次数: 0