-
基于第一性原理密度泛函理论的赝势平面波方法, 对Si(111)基外延稳定正交相OsSi2的能带结构、 态密度以及光电特性进行了研究. 研究结果表明, Si(111)基外延稳定正交相的OsSi2是一种间接带隙半导体, 禁带宽度为0.625 eV; 其价带主要是由硅的3s, 3p态电子和锇的5d态电子构成, 导带主要由锇的5d态电子与硅的3s, 3p态电子构成; 其静态介电函数为15.065, 折射率为3.85, 吸收系数最大峰值为3.9665× 105 cm-1. 利用理论计算的能带结构和态密度研究了Si(111)基外延稳定正交相OsSi2的介电函数、折射率、吸收系数、光电导率和能量损失函数的变化规律, 为Si(111)基外延OsSi2的应用提供了理论基础.The electronic structure and photoelectric properties of semiconductor material OsSi2 epitaxially grown on a Si(111) substrate are invesligated using the pseudo potential plane wave method based on first principles method. The calculated results show that OsSi2 is an indirect semiconductor material with a band gap of 0.625 eV. The valence band of OsSi2 epitaxially grown on a Si(111) substrate is composed mainly of Si 3s, 3p and Os 5d, and the conduction band is comprised mainly of Os 5d as well as Si 3s, 3p. The static dielectric function is 15.065, the reflectivity is 3.85, and the biggest peak of the absorption coefficient is 3.9665× 105 cm-1. Furthermore, the static dielectric function, refractivity index, reflectivity, absorption, conductivity and loss function of OsSi2 epitaxially grown on a Si(111) substrate are analyzed in terms of the calculated band structure and density of states. The results offer theoretical data for the design and application of OsSi2.
-
Keywords:
- first principles methods /
- OsSi2 /
- electronic structure /
- photoelectric properties
[1] Miyake K, Makita Y, Maeda Y, Suemasu T 2001 Thin Solid Films 381 Vii
[2] Van E J, Turchi P E A, Sterne P A 1996 Phys. Rev. B 54 7897
[3] Filonov A B, Migas D B, Shaposhnikov V L, Dorozhkin N N, Borisenko V E, Lange H 1997 Appl. Phys. Lett. 70 976
[4] Migas D B, Miglio L, Henrion W, Rebien M, Marabelli F, Cook B A, Shaposhnikow V L, Borisenko V E 2001 Phys. Rev. B 64 075208
[5] Tani J I, Takahashi M, Kido H 2011 Comput. Mater. Sci. 50 2009
[6] Chang Y S, Chou M L 1989 J. Appl. Phys. 66 3011
[7] Cottier R J, Amir F Z, Zhao W, Hossain K, Gorman B P, Golding T D, Anibou N, Donner W 2006 J. Vacuum Sci. Technol. B 24 1488
[8] Engstrom I 1970 Acta Chem. Scand. 24 2117
[9] Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Rev. Condens. Matter. 14 2717
[10] Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864
[11] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[12] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[13] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[14] Broyden C G 1970 J. Inst. Math. Appl. 6 222
[15] Fletcher R 1970 Comput. J. 13 317
[16] Goldfarb D 1970 Math. Comput. 24 23
[17] Shanno D F 1970 Math. Comput. 24 647
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Li X Z, Xie Q, Chen Q, Zhang F J, Cui D M 2010 Acta Phys. Sin. 59 2016 (in Chinese) [李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌 2010 59 2016]
[21] Kishino S, Imai T, Iida T, Nakaishi Y, Shinada M, Takanashi Y, Hamada N 2007 J. Alloy Compd. 428 22
[22] Schellenberg L, Braun H F, Muller J 1988 J. Less-Common Met. 144 341
-
[1] Miyake K, Makita Y, Maeda Y, Suemasu T 2001 Thin Solid Films 381 Vii
[2] Van E J, Turchi P E A, Sterne P A 1996 Phys. Rev. B 54 7897
[3] Filonov A B, Migas D B, Shaposhnikov V L, Dorozhkin N N, Borisenko V E, Lange H 1997 Appl. Phys. Lett. 70 976
[4] Migas D B, Miglio L, Henrion W, Rebien M, Marabelli F, Cook B A, Shaposhnikow V L, Borisenko V E 2001 Phys. Rev. B 64 075208
[5] Tani J I, Takahashi M, Kido H 2011 Comput. Mater. Sci. 50 2009
[6] Chang Y S, Chou M L 1989 J. Appl. Phys. 66 3011
[7] Cottier R J, Amir F Z, Zhao W, Hossain K, Gorman B P, Golding T D, Anibou N, Donner W 2006 J. Vacuum Sci. Technol. B 24 1488
[8] Engstrom I 1970 Acta Chem. Scand. 24 2117
[9] Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Rev. Condens. Matter. 14 2717
[10] Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864
[11] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[12] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[13] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[14] Broyden C G 1970 J. Inst. Math. Appl. 6 222
[15] Fletcher R 1970 Comput. J. 13 317
[16] Goldfarb D 1970 Math. Comput. 24 23
[17] Shanno D F 1970 Math. Comput. 24 647
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Li X Z, Xie Q, Chen Q, Zhang F J, Cui D M 2010 Acta Phys. Sin. 59 2016 (in Chinese) [李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌 2010 59 2016]
[21] Kishino S, Imai T, Iida T, Nakaishi Y, Shinada M, Takanashi Y, Hamada N 2007 J. Alloy Compd. 428 22
[22] Schellenberg L, Braun H F, Muller J 1988 J. Less-Common Met. 144 341
计量
- 文章访问数: 6925
- PDF下载量: 490
- 被引次数: 0