-
基于C60受体和有机分子给体的太阳能电池是目前非常重要的一个研究热点, 利用同步辐射真空紫外光电子能谱(SRUPS) 技术研究了酞菁铁(FePc)与TiO2(110)及C60的界面电子结构, 以及FePc与C60分子混合薄膜的电子结构. SRUPS价带谱显示, FePc沉积在化学计量比与还原态两种不同的TiO2(110)表面时, FePc分子的HOMO能级均随FePc厚度的变化发生了移动, 而在化学计量比的TiO2(110)表面位移较大, 同时发生界面能带弯曲, 说明存在从有机层向衬底的电子转移. 在FePc/C60和C60/FePc界面形成过程中, FePc与C60分子的最高占据分子轨道(HOMO)位移大小基本相同. 由界面能级排列发现, 在FePc与C60的混合薄膜中, FePc分子的HOMO与C60分子的最高占据分子轨道能级差较大, 这有利于提高器件开路电压, 改善器件性能.The electronic structures at the interfaces of iron phthalocyanine (FePc)/TiO2(110), FePc/C60 and FePc:C60 blends are studied in situ by synchrotron radiation-based ultraviolet photoelectron spectroscopy (SRUPS). It is found that the interaction between organic molecules and the surface of reduced rutile TiO2(110) is stronger than that of the stoichiometric TiO2(110) interface. The energy level alignments at the FePc/C60 interface and FePc:C60 blends are drawn based on the evolutions of the interfacial electronic structures. From the SRUPS spectra, the band bending energies are found to be 0.45 eV in the C60 layer and 0.1 eV in the FePc layer at the FePc/C60 interface. The interface dipole energy is 0.2 eV at the FePc/C60 interface. The offsets between the HOMO of FePc and LUMO of C60 are 0.85 eV at FePc/C60 and 1.04 eV at FePc:C60 blends, which indicates that the blend films can improve the efficiency of the relevant optical-electric devices.
-
Keywords:
- synchrotron radiation photoemission /
- FePc /
- C60 /
- interface electronic structure
[1] Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533
[2] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature Materials 4 864
[3] Aristov V Y, Molodtsova O V, Maslyuk V V, Vyalikh D V, Bredow T, Mertig I, Preobrajenski A B, Knupfer M 2010 Org. Electron. 11 1461
[4] Sun J T, Pan L D, Hu H, Du S X, Gao H J 2010 Chin. Phys. B 19 097809
[5] Ruden P 2011 Nature Materials 10 8
[6] Opitz A, Bronner M, Brütting W, Himmerlich M, Schaefer J, Krischok S 2007 Appl. Phys. Lett. 90 212112
[7] Gao W Y, Kahn A 2002 Org. Electron. 3 53
[8] Park S H, Jeong J G, Kim H J, Park S H, Cho M H, Cho S W, Yi Y J, Heo M Y, Sohn H 2010 Appl. Phys. Lett. 96 013302
[9] Allemond P M, Koch A, Wudl F, Rubin Y, Diederih F, Alvarez M M, Anz S J, Whetten R L 1991 J. Am. Chem. Soc. 113 1050
[10] Neugebauer H, Brabec C J, Hummelen J C, Sariciftci N S 2000 Sol. Energy Mater. Sol. Cells 61 35]
[11] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Huang J Z, Song D D, Zhu H N, Huang J Y, Xu X R 2008 Acta Phys. Sin. 57 5911 (in Chinese) [袁广才, 徐征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢 2008 57 5911]
[12] Kim I, Haverinen H M, Wang Z X, Madakuni S, Kim Y, Li J, Jabbour G E 2009 Chem. Mater. 21 4256
[13] Evangelista F, Ruocco A, Corradini V, Donzello M P, Mariani C, Betti M G 2003 Surf. Sci. 531 123
[14] Hill I G, Kahn A, Soos Z G, Pascal R A 2000 Chem. Phys. Lett. 327 181
[15] Scott J C 2003 J. Vac. Sci. Tech. A 21 521
[16] Watanabe M, Sano K, Inoue M, Takagi T, Nakao T, Yokoa K, Takada J 1998 Appl. Surf. Sci. 663 130
[17] Sato N, Yoshida H, Tsutsumi K 2003 Synth. Metals 133 673
[18] Li Q X, Yang J Y, Li Z Y, Hou J G, Zhu Q S 2001 Acta Phys. Sin. 50 1877 (in Chinese) [李群祥, 杨金龙, 李震宇, 侯建国, 朱清时 2001 50 1877]
[19] Dou W D, Song F, Huang H, Bao S N, Chen Q 2008 Acta Phys. Sin. 57 628 (in Chinese) [窦卫东, 宋飞, 黄寒, 鲍世宁, 陈桥 2008 57 628]
[20] Kessler B 1998 Appl. Phys. A 67 125
[21] Palmgren P, Priya B R, Niraj N P P, Göthelid M 2006 Solar Energy Materials & Solar Cells 90 3602
[22] Zhang W H, Mo X, Wang G D, Wang L W, Xu F Q, Pan H B, Shi M M, Chen H Z, Wang M 2007 Acta Phys. Sin. 56 4936 (in Chinese) [张文华, 莫雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪茫 2007 56 4936]
[23] Ohno T R, Chen Y, Harvey S E, Kroll G H, Weaver J H, Hauer R E, Smalley R E 1991 Phys. Rev. B 44 13747
[24] Gentry K P, Gredig T, Schuller I K 2009 Phys. Rev. B 80 174118
[25] Jiang Z Q, Zhang W H, Jin L, Yang X, Xu F Q, Zhu J F, Huang W X 2007 J. Phys. Chem. C 111 12434
[26] Thomas A G, Flavell W R, Kumarasinghe A R, Tsoutou D, Khan N, Chatwin C, Rayner S, Smith G C, Stochbauer R L, Warren S, Johal T K, Patel S, Holland D 2007 Phys. Rev. B 75 035105
[27] Jin D 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [金丹 2011 博士学位论文 (杭州: 浙江大学)]
[28] Lozzi L, Santucci S 2011 J. Chem. Phys. 134 114709
[29] Vogtenhuber D, Podloucky R, Redinger J, Hebenstreit E L D, Hebenstreit W, Diebold U 2002 Phys. Rev. B 65 125411
[30] Akaike K, Opitz A, Wager J L, Brütting W, Kanai K, Ouchi Y, Seki K 2010 Org. Electron. 11 1853
[31] Yen J C, Sheng H Y, Chain S H 2009 Chem. Rev. 109 5868
[32] Å hlund J, Nilson K, Schiessling J, Kjeldaard L, Berner S, Må rtensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709
-
[1] Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533
[2] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature Materials 4 864
[3] Aristov V Y, Molodtsova O V, Maslyuk V V, Vyalikh D V, Bredow T, Mertig I, Preobrajenski A B, Knupfer M 2010 Org. Electron. 11 1461
[4] Sun J T, Pan L D, Hu H, Du S X, Gao H J 2010 Chin. Phys. B 19 097809
[5] Ruden P 2011 Nature Materials 10 8
[6] Opitz A, Bronner M, Brütting W, Himmerlich M, Schaefer J, Krischok S 2007 Appl. Phys. Lett. 90 212112
[7] Gao W Y, Kahn A 2002 Org. Electron. 3 53
[8] Park S H, Jeong J G, Kim H J, Park S H, Cho M H, Cho S W, Yi Y J, Heo M Y, Sohn H 2010 Appl. Phys. Lett. 96 013302
[9] Allemond P M, Koch A, Wudl F, Rubin Y, Diederih F, Alvarez M M, Anz S J, Whetten R L 1991 J. Am. Chem. Soc. 113 1050
[10] Neugebauer H, Brabec C J, Hummelen J C, Sariciftci N S 2000 Sol. Energy Mater. Sol. Cells 61 35]
[11] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Huang J Z, Song D D, Zhu H N, Huang J Y, Xu X R 2008 Acta Phys. Sin. 57 5911 (in Chinese) [袁广才, 徐征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢 2008 57 5911]
[12] Kim I, Haverinen H M, Wang Z X, Madakuni S, Kim Y, Li J, Jabbour G E 2009 Chem. Mater. 21 4256
[13] Evangelista F, Ruocco A, Corradini V, Donzello M P, Mariani C, Betti M G 2003 Surf. Sci. 531 123
[14] Hill I G, Kahn A, Soos Z G, Pascal R A 2000 Chem. Phys. Lett. 327 181
[15] Scott J C 2003 J. Vac. Sci. Tech. A 21 521
[16] Watanabe M, Sano K, Inoue M, Takagi T, Nakao T, Yokoa K, Takada J 1998 Appl. Surf. Sci. 663 130
[17] Sato N, Yoshida H, Tsutsumi K 2003 Synth. Metals 133 673
[18] Li Q X, Yang J Y, Li Z Y, Hou J G, Zhu Q S 2001 Acta Phys. Sin. 50 1877 (in Chinese) [李群祥, 杨金龙, 李震宇, 侯建国, 朱清时 2001 50 1877]
[19] Dou W D, Song F, Huang H, Bao S N, Chen Q 2008 Acta Phys. Sin. 57 628 (in Chinese) [窦卫东, 宋飞, 黄寒, 鲍世宁, 陈桥 2008 57 628]
[20] Kessler B 1998 Appl. Phys. A 67 125
[21] Palmgren P, Priya B R, Niraj N P P, Göthelid M 2006 Solar Energy Materials & Solar Cells 90 3602
[22] Zhang W H, Mo X, Wang G D, Wang L W, Xu F Q, Pan H B, Shi M M, Chen H Z, Wang M 2007 Acta Phys. Sin. 56 4936 (in Chinese) [张文华, 莫雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪茫 2007 56 4936]
[23] Ohno T R, Chen Y, Harvey S E, Kroll G H, Weaver J H, Hauer R E, Smalley R E 1991 Phys. Rev. B 44 13747
[24] Gentry K P, Gredig T, Schuller I K 2009 Phys. Rev. B 80 174118
[25] Jiang Z Q, Zhang W H, Jin L, Yang X, Xu F Q, Zhu J F, Huang W X 2007 J. Phys. Chem. C 111 12434
[26] Thomas A G, Flavell W R, Kumarasinghe A R, Tsoutou D, Khan N, Chatwin C, Rayner S, Smith G C, Stochbauer R L, Warren S, Johal T K, Patel S, Holland D 2007 Phys. Rev. B 75 035105
[27] Jin D 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [金丹 2011 博士学位论文 (杭州: 浙江大学)]
[28] Lozzi L, Santucci S 2011 J. Chem. Phys. 134 114709
[29] Vogtenhuber D, Podloucky R, Redinger J, Hebenstreit E L D, Hebenstreit W, Diebold U 2002 Phys. Rev. B 65 125411
[30] Akaike K, Opitz A, Wager J L, Brütting W, Kanai K, Ouchi Y, Seki K 2010 Org. Electron. 11 1853
[31] Yen J C, Sheng H Y, Chain S H 2009 Chem. Rev. 109 5868
[32] Å hlund J, Nilson K, Schiessling J, Kjeldaard L, Berner S, Må rtensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709
计量
- 文章访问数: 7841
- PDF下载量: 943
- 被引次数: 0