搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远程干涉型光纤传感系统的非线性相位噪声分析

陈伟 孟洲 周会娟 罗洪

引用本文:
Citation:

远程干涉型光纤传感系统的非线性相位噪声分析

陈伟, 孟洲, 周会娟, 罗洪

Nonlinear phase noise analysis of long-haul interferometric fiber sensing system

Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong
PDF
导出引用
  • 以远程干涉型光纤传感系统为背景, 研究了系统非线性相位噪声构成, 对各构成要素的具体影响进行了详细分析和综合评价, 简要讨论了噪声抑制方案. 研究表明, 系统相位噪声主要包括强度噪声转化而来的相位噪声、非线性效应引起激光 线宽展宽导致的相位噪声以及自相位调制和交叉相位调制引入的相位噪声. 受激布里渊散射和四波混频可引入强度噪声并转化为相位噪声, 对于探测带宽较窄的光纤传感系统, 四波混频引入的该部分噪声往往可以忽略. 受激布里渊散射、四波混频和调制不稳定性都可引起激光线宽展宽从而造成相位噪声的增大. 当系统信道数目较多时, 交叉相位调制对相位噪声的贡献不可忽略. 所得结论对远程干涉型光纤传感系统的实际应用具有重要的指导意义.
    Nonlinear phase noise structure is studied in the background of long-haul interferometric fiber sensing system. The influence of each factor is analyzed and evaluated in detail, and suppression methods are discussed briefly. The results show that phase noise of the system mainly includes the phase noise converted from intensity noise, the phase noise caused by nonlinear effects induced laser linewidth variations as well as the phase noise introduced by self phase modulation and cross phase modulation. Stimulated Brillouin scattering and four-wave mixing can cause intensity noise and then it turns into phase noise. For the fiber sensing system which has a narrow detecting bandwidth, the corresponding noise induced by four-wave mixing can always be neglected. Stimulated Brillouin scattering, four-wave mixing and modulation instability can cause laser linewidth broadening, leading to the increase of phase noise. When the number of channels is large, the phase noise introduced by cross phase modulation cannot be ignored. The obtained results provide a good guidance for the practical applications of long-haul interferometric fiber sensing systems.
    • 基金项目: 国家自然科学基金(批准号: 61177073);光电信息与传感技术广东普通高 校重点实验室开放研究基金(批准号: gdol201101); 湖南省研究生创新基金(批准号: CX2011B033)和国防科学技术大学研究生院创 新基金(批准号: B110703)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61177073), the Open Fund of Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, China (Grant No. gdol201101), Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2011B033) and the Fund of Innovation of Graduate School of NUDT, China (Grant No. B110703).
    [1]

    Crickmore R, Cranch G A, Kirkendall C K, Daley K, Motley S, Bautista A, Salzano J, Nash P 2003 IEEE Photon. Technol. Lett. 10 1579

    [2]

    Clay K K, Dandrige A 2004 J. Phys. D: Appl. Phys. 37 197

    [3]

    Kringlebotn J T, Naksrtad H, Eriksrud M 2009 Proc. SPIE 7503 75037U

    [4]

    Nash P, Strudley A, Crickmore R, DeFreitas J 2009 Proc. SPIE 7503 75037T

    [5]

    Zhang J, Pan W, Yan L S, Luo B 2010 Acta Phys. Sin. 59 7002 (in Chinese) [张婧, 潘炜, 闫连山, 罗斌 2010 59 7002]

    [6]

    Sugie T 1991 J. Lightwave Technol. 9 1145

    [7]

    van Deventer M O, van der Tol J J G M, Boot A J 1994 IEEE Photon. Technol. Lett. 6 291

    [8]

    Waarts R G, Braun R P 1985 Electron. Lett. 21 1114

    [9]

    Djupsjöbacka A, Jacobsen G, Tromborg B 2000 J. Lightwave Technol. 18 416

    [10]

    Maeda M W, Sessa W B, Way W I, Yi-Yan A, Curtis L, Spicer R, Laming R I 1990 J. Lightwave Technol. 8 1402

    [11]

    Inoue K, Nakanishi K, Oda K, Toba H 1994 J. Lightwave Technol. 12 1423

    [12]

    Du J X 2009 Acta Phys. Sin. 58 1046 (in Chinese) [杜建新 2009 58 1046]

    [13]

    Chen W, Meng Z 2012 Chin. Opt. Lett. 10 020603

    [14]

    Chen W, Meng Z 2011 Proc. SPIE 7753 77532G

    [15]

    Chen W, Meng Z 2011 Opt. Laser Technol. 43 1270

    [16]

    Meng Z, Hu Y M, Xiong S D, Stewart G, Whitenett G, Culshaw B 2005 Appl. Opt. 44 3425

    [17]

    Dandridge A, Tveten A B, Giallorenzi T G 1982 IEEE J. Quantum Electron. 18 1647

    [18]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205

    [19]

    Gordon J P, Mollenauer L F 1990 Opt. Lett. 15 1351

    [20]

    Agrawal G P (Translated by Jia D F et al.) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp88-90, 165-166, 488-490 (in Chinese) [阿戈沃著 贾东方等译 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第88-90页, 第165-166页, 第488-490页]

    [21]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [22]

    Hill K O, Johnson D C, Kawasaki B S, MacDonald R I 1978 J. Appl. Phys. 49 5098

    [23]

    Alasia D, Herraez M G, Abrardi L, Lopez S M, Thevenaz L 2005 Proc. SPIE 5855 587

    [24]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203 (in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君 2011 60 084203]

    [25]

    Chen W, Meng Z 2010 Chin. Opt. Lett. 8 1124

    [26]

    Chen W, Meng Z 2011 Chinese J. Lasers 38 0305002 (in Chinese) [陈伟, 孟洲 2011 中国激光 38 0305002]

    [27]

    Hansryd J, Dross F, Westlund M, Andrekson P A, Knudsen S N 2001 J. Lightwave Technol. 19 1691

    [28]

    Yoshizawa N, Imai T 1993 J. Lightwave Technol. 11 1518

    [29]

    Shiraki K, Ohashi M, Tateda M 1995 Electron. Lett. 31 668

    [30]

    de Oliveira C A S, Jen C K, Shang A, Saravanos C 1993 J. Opt. Soc. Am. B 10 969

    [31]

    Li M J, Chen X, Wang J, Gray S, Liu A, Demeritt J A, Ruffin A B, Crowley A M, Walton D T, Zenteno L A 2007 Opt. Express 15 8290

    [32]

    Chen W, Meng Z 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165402

    [33]

    Forghieri F, Tkach R W, Chraplyvy A R 1995 J. Lightwave Technol. 13 889

    [34]

    Chraplyvy A R, Gnauck A H, Tkach R W, Derosier R M 1993 IEEE Photon. Technol. Lett. 5 1233

    [35]

    Inoue K 1993 J. Lightwave Technol. 11 2116

  • [1]

    Crickmore R, Cranch G A, Kirkendall C K, Daley K, Motley S, Bautista A, Salzano J, Nash P 2003 IEEE Photon. Technol. Lett. 10 1579

    [2]

    Clay K K, Dandrige A 2004 J. Phys. D: Appl. Phys. 37 197

    [3]

    Kringlebotn J T, Naksrtad H, Eriksrud M 2009 Proc. SPIE 7503 75037U

    [4]

    Nash P, Strudley A, Crickmore R, DeFreitas J 2009 Proc. SPIE 7503 75037T

    [5]

    Zhang J, Pan W, Yan L S, Luo B 2010 Acta Phys. Sin. 59 7002 (in Chinese) [张婧, 潘炜, 闫连山, 罗斌 2010 59 7002]

    [6]

    Sugie T 1991 J. Lightwave Technol. 9 1145

    [7]

    van Deventer M O, van der Tol J J G M, Boot A J 1994 IEEE Photon. Technol. Lett. 6 291

    [8]

    Waarts R G, Braun R P 1985 Electron. Lett. 21 1114

    [9]

    Djupsjöbacka A, Jacobsen G, Tromborg B 2000 J. Lightwave Technol. 18 416

    [10]

    Maeda M W, Sessa W B, Way W I, Yi-Yan A, Curtis L, Spicer R, Laming R I 1990 J. Lightwave Technol. 8 1402

    [11]

    Inoue K, Nakanishi K, Oda K, Toba H 1994 J. Lightwave Technol. 12 1423

    [12]

    Du J X 2009 Acta Phys. Sin. 58 1046 (in Chinese) [杜建新 2009 58 1046]

    [13]

    Chen W, Meng Z 2012 Chin. Opt. Lett. 10 020603

    [14]

    Chen W, Meng Z 2011 Proc. SPIE 7753 77532G

    [15]

    Chen W, Meng Z 2011 Opt. Laser Technol. 43 1270

    [16]

    Meng Z, Hu Y M, Xiong S D, Stewart G, Whitenett G, Culshaw B 2005 Appl. Opt. 44 3425

    [17]

    Dandridge A, Tveten A B, Giallorenzi T G 1982 IEEE J. Quantum Electron. 18 1647

    [18]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205

    [19]

    Gordon J P, Mollenauer L F 1990 Opt. Lett. 15 1351

    [20]

    Agrawal G P (Translated by Jia D F et al.) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp88-90, 165-166, 488-490 (in Chinese) [阿戈沃著 贾东方等译 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第88-90页, 第165-166页, 第488-490页]

    [21]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [22]

    Hill K O, Johnson D C, Kawasaki B S, MacDonald R I 1978 J. Appl. Phys. 49 5098

    [23]

    Alasia D, Herraez M G, Abrardi L, Lopez S M, Thevenaz L 2005 Proc. SPIE 5855 587

    [24]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203 (in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君 2011 60 084203]

    [25]

    Chen W, Meng Z 2010 Chin. Opt. Lett. 8 1124

    [26]

    Chen W, Meng Z 2011 Chinese J. Lasers 38 0305002 (in Chinese) [陈伟, 孟洲 2011 中国激光 38 0305002]

    [27]

    Hansryd J, Dross F, Westlund M, Andrekson P A, Knudsen S N 2001 J. Lightwave Technol. 19 1691

    [28]

    Yoshizawa N, Imai T 1993 J. Lightwave Technol. 11 1518

    [29]

    Shiraki K, Ohashi M, Tateda M 1995 Electron. Lett. 31 668

    [30]

    de Oliveira C A S, Jen C K, Shang A, Saravanos C 1993 J. Opt. Soc. Am. B 10 969

    [31]

    Li M J, Chen X, Wang J, Gray S, Liu A, Demeritt J A, Ruffin A B, Crowley A M, Walton D T, Zenteno L A 2007 Opt. Express 15 8290

    [32]

    Chen W, Meng Z 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165402

    [33]

    Forghieri F, Tkach R W, Chraplyvy A R 1995 J. Lightwave Technol. 13 889

    [34]

    Chraplyvy A R, Gnauck A H, Tkach R W, Derosier R M 1993 IEEE Photon. Technol. Lett. 5 1233

    [35]

    Inoue K 1993 J. Lightwave Technol. 11 2116

  • [1] 覃俭. 光源相位噪声对高斯玻色采样的影响.  , 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] 张超群, 李瑞鑫, 张文慧, 焦南婧, 田龙, 王雅君, 郑耀辉. 光学滤波腔输出场音频段噪声特性的实验研究.  , 2022, 71(24): 244205. doi: 10.7498/aps.71.20221325
    [3] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生.  , 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性.  , 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [5] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器.  , 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究.  , 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统.  , 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [8] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展.  , 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [9] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究.  , 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [10] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [11] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究.  , 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [12] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构.  , 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [13] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析.  , 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [14] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究.  , 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [15] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振.  , 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [16] 邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳. 光纤激光经过模清洁器后的强度噪声分析.  , 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [17] 祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延. 在色散渐减光子晶体光纤中产生超连续谱的实验研究.  , 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器.  , 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器.  , 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验.  , 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  7907
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-30
  • 修回日期:  2012-02-20
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map