-
纳秒激光与团簇相互作用产生高价离子逐渐成为分子物理界的热点之一, 为了深入研究团簇电离的本质, 本文以分子结构相似、元素组成相同的苯、环己烯和环己烷的分子团簇为对象, 利用飞行时间质谱研究了其与5 ns的532 nm激光相互作用时电离产物的价态和强度分布. 结果表明: 这三种化合物多光子电离效率苯>环己烯>环己烷, 但其高价离子的价态和比值苯是最低的, 环己烷的碳离子最高价态为4价, C3+和C2+的比值为1.1; 环己烯电离产物C3+和C2+ 的比值降低为0.6; 苯团簇的最高价态只有3价, C3+和C2+的比值约为0.4. 引起这种现象的原因可以归结于高的多光子电离效率会导致团簇多位点的电离, 引起团簇在电子加热到发生碰撞电离之前发生解离, 减小了团簇的尺寸, 进而减少了离子发生碰撞电离产生高价离子的反应时间, 最终阻碍了高价态离子的产生.The productions of multiply charged ions in the interactions of intense nanosecond laser pulse with clusters have aroused broad interests in molecular physics. Benzene, cyclohexene and cyclohexane clusters are chosen to study the effect of multiphoton ionization (MPI) efficiency on the relative intensity of multiply charged ions, as they possess similar molecular structures and the same element constitutions. They are ionized with a 5 ns Nd-YAG nanosecond laser. The carbon charge state produced by cyclohexene and cyclohexane is about 4; while by benzene is only about 3. The ratios of C3+/C2+ for cyclohexane, cyclohexene and benzene are 1.1, 0.6 and 0.4, respectively. The relative MPI efficiencies of three molecules are measured to be in the magnitude sequence of benzene > cyclohexene > cyclohenane by diffusion beam. Higher MPI efficiency of molecules can cause more than one molecules to be ionized at the edge of laser pulse, the Coulomb repelling force between adjacent ions leads clusters to early split into small size ones, which will prevent the production of the highly charged ions.
-
Keywords:
- cluster /
- multiply charged ion /
- multiphoton ionization /
- benzene
[1] Wang G H 2003 Cluster Physics (Shanghai: Shanghai Science Technology Press) p1 (in Chinese) [王广厚 2003 团簇物理学(上海: 上海科学技术出版社)第1页]
[2] Krainov V P, Smirnov M B 2002 Phys. Rep. 370 237
[3] Last I, Jortner J 2004 J. Chem. Phys. 121 3030
[4] Last I, Jortner J 2006 Phys. Rev. A. 73 013202-1
[5] Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Phys. Rev. A 74 023201-1
[6] Saalmann U, Siedschlag C, Rost J M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R39
[7] Castleman A W 2007 Eur. J. Mass Spectrom. 13 7
[8] Symes D, Hohenberger M, Henig A, Ditmire T 2007 Phys. Rev. Lett. 98 123401-1
[9] Karras G, Kosmidis C 2010 Int. J. Mass Spectrom. 290 133
[10] Zhang N Z, Wang W G, Zhao W D, Han F L, Li H Y 2010 Chem. Phys. 373 181
[11] Kong X L, Luo X L, Niu D M, Li H Y 2004 Chem. Phys. Lett. 388 139
[12] Luo X L, Niu D M, Kong X L, Wen L H, Liang F, Pei K M, Wang B, Li H Y 2005 Chem. Phys. 310 17
[13] Corral I, Palacios A, Yanez M 2011 Phys. Chem. Chem. Phys. 13 18365
[14] Marcalo J, Santos M, Gibson J K 2011 Phys. Chem. Chem. Phys. 13 18322
[15] Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264
[16] Wang W G, Li H Y, Niu D M, Wen L H, Zhang N Z 2008 Chem. Phys. 352 111
[17] Zhang N Z, Wang W G, Cang H W, Wang H L, Li H Y 2009 Chem. Phys. Lett. 469 14
[18] Niu D M, Li H Y, Wang W G, Xiao X, Luo X L, Zhang N Z, Hou K Y 2008 Mol. Phys. 106 1389
[19] Kong X L, Luo X L, Niu D M, Zhang X Y, Kan R F, Li H Y 2004 Acta Phys. Sin. 53 1340 (in Chinese) [孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋 2004 53 1340]
[20] Xiao X, Li H Y, Luo X L, Niu D M, Wen L H, Wang B, Liang F, Hou K Y, Zhang N Z 2005 Acta Phys. Sin. 54 5098 (in Chinese) [肖雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王宾, 梁峰, 侯可勇, 张娜珍 2005 54 5098]
[21] Zhang N Z, Cang H W, Wang W G, Miao S Y, Jin F, Wu Q H, Hua L, Li H Y 2009 Acta Phys. Sin. 58 4556 (in Chinese) [张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋 2009 58 4556]
[22] Niu D M, Li H Y, Liang F, Wen L H, Luo X L, Wang B, Hou K Y, Zhang X X 2005 Chem. Phys. Lett. 403 218
[23] Zhang N Z 2009 Ph. D. Dissertation (Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Science) (in Chinese) [张娜珍 2009 博士学位论文 (大连: 中国科学院大连化学物理研究所)]
[24] Hagena O F 1992 Rev. Sci. Instrum. 63 1374
-
[1] Wang G H 2003 Cluster Physics (Shanghai: Shanghai Science Technology Press) p1 (in Chinese) [王广厚 2003 团簇物理学(上海: 上海科学技术出版社)第1页]
[2] Krainov V P, Smirnov M B 2002 Phys. Rep. 370 237
[3] Last I, Jortner J 2004 J. Chem. Phys. 121 3030
[4] Last I, Jortner J 2006 Phys. Rev. A. 73 013202-1
[5] Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Phys. Rev. A 74 023201-1
[6] Saalmann U, Siedschlag C, Rost J M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R39
[7] Castleman A W 2007 Eur. J. Mass Spectrom. 13 7
[8] Symes D, Hohenberger M, Henig A, Ditmire T 2007 Phys. Rev. Lett. 98 123401-1
[9] Karras G, Kosmidis C 2010 Int. J. Mass Spectrom. 290 133
[10] Zhang N Z, Wang W G, Zhao W D, Han F L, Li H Y 2010 Chem. Phys. 373 181
[11] Kong X L, Luo X L, Niu D M, Li H Y 2004 Chem. Phys. Lett. 388 139
[12] Luo X L, Niu D M, Kong X L, Wen L H, Liang F, Pei K M, Wang B, Li H Y 2005 Chem. Phys. 310 17
[13] Corral I, Palacios A, Yanez M 2011 Phys. Chem. Chem. Phys. 13 18365
[14] Marcalo J, Santos M, Gibson J K 2011 Phys. Chem. Chem. Phys. 13 18322
[15] Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264
[16] Wang W G, Li H Y, Niu D M, Wen L H, Zhang N Z 2008 Chem. Phys. 352 111
[17] Zhang N Z, Wang W G, Cang H W, Wang H L, Li H Y 2009 Chem. Phys. Lett. 469 14
[18] Niu D M, Li H Y, Wang W G, Xiao X, Luo X L, Zhang N Z, Hou K Y 2008 Mol. Phys. 106 1389
[19] Kong X L, Luo X L, Niu D M, Zhang X Y, Kan R F, Li H Y 2004 Acta Phys. Sin. 53 1340 (in Chinese) [孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋 2004 53 1340]
[20] Xiao X, Li H Y, Luo X L, Niu D M, Wen L H, Wang B, Liang F, Hou K Y, Zhang N Z 2005 Acta Phys. Sin. 54 5098 (in Chinese) [肖雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王宾, 梁峰, 侯可勇, 张娜珍 2005 54 5098]
[21] Zhang N Z, Cang H W, Wang W G, Miao S Y, Jin F, Wu Q H, Hua L, Li H Y 2009 Acta Phys. Sin. 58 4556 (in Chinese) [张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋 2009 58 4556]
[22] Niu D M, Li H Y, Liang F, Wen L H, Luo X L, Wang B, Hou K Y, Zhang X X 2005 Chem. Phys. Lett. 403 218
[23] Zhang N Z 2009 Ph. D. Dissertation (Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Science) (in Chinese) [张娜珍 2009 博士学位论文 (大连: 中国科学院大连化学物理研究所)]
[24] Hagena O F 1992 Rev. Sci. Instrum. 63 1374
计量
- 文章访问数: 7286
- PDF下载量: 455
- 被引次数: 0