搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V形曲折矩形槽慢波结构的研究

刘洋 徐进 许雄 沈飞 魏彦玉 黄民智 唐涛 王文祥 宫玉彬

引用本文:
Citation:

V形曲折矩形槽慢波结构的研究

刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬

Research on the V-shape folded rectangular groove slow-wave structure

Liu Yang, Xu Jin, Xu Xiong, Shen Fei, Wei Yan-Yu, Huang Min-Zhi, Tang Tao, Wang Wen-Xiang, Gong Yu-Bin
PDF
导出引用
  • 提出了一种新型的慢波结构V形曲折矩形槽慢波结构, 该结构是由矩形槽波导沿其E面法向周期性呈V形折叠而成, 其两金属板之间的间隙形成天然的带状电子注通道. 相比传统的U形曲折矩形槽波导, 它能在保持良好高频特性的情况下增加互作用面积, 从而可以采用面积更大的带状电子注以获得更大的输出功率. 分析了该结构的高频特性, 在V波段完成了对行波管互作用电路的设计, 并利用三维粒子模拟的方法估计了其工作性能. 研究结果表明, 当工作电压和电流分别为12.8 kV和600 mA 时, 在5864 GHz的频率范围内饱和平均输出功率大于1000 W, 相应的饱和增益和电子效率分别大于33 dB和13.2%.
    A novel slow-wave structure called V-shape folded rectangular groove waveguide is proposed. This structure evolves from a conventional rectangular groove waveguide bending the groove with V-shape along its longitudinal direction, and the gap between metal plates forms a sheet electron beam channel naturally. Compared with the traditional U-shape structure, it can increase the interaction area without changing good high-frequency properties, which can adopt the sheet electron beam with a larger area to acquire more output power. In this paper, the high-frequency properties of this structure are analyzed, the interaction circuit for the V-band TWT is designed and the PIC simulation is performed to predict the operating characteristics. From our calculations, this tube can produce average saturation output power over 1000 Watts in a frequency range from 58 GHz to 64 GHz when the cathode voltage and beam current are set to be 12.8 kV and 600 mA respectively. The corresponding saturation gain and electron efficiency can reach over 33 dB and 13.2% respectively.
    • 基金项目: 国家杰出青年科学基金(批准号: 61125103), 国防科技重点实验室基金(批准号: 9140C050101110C0501)和中央高校基本科研业务费项目(批准号: ZYGX2009Z003, ZYGX2010J054)资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103), the Vacuum Electronics National Lab Foundation (Grant No. 9140C050101110C0501), and the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2009Z003, ZYGX2010J054).
    [1]

    Feng J J, Hu Y F, Cai J, Wu X P, Tang Y 2010 Vacuum Electronics 02 27 (in Chinese) [冯进军, 胡银富, 蔡军, 邬显平, 唐烨 2010 真空电子技术 02 24]

    [2]

    Ding Y G, Liu P K, Zhang Z C, Wang Y 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, India, Feb. 21—24, 2011 p525

    [3]

    Safier P N, Dronov V, Antonsen T M, Qiu J X, Danly B G, Levush B 2006 IEEE Trans. Microw. Theory Tech. 54 3605

    [4]

    Kornfeld G K, Bosch E, Gerum W, Fleury G 2001 IEEE Trans. Electron Devices 48 68

    [5]

    Feng J J, Qu B 2010 Vacuum Electronics 02 16 (in Chinese) [冯进军, 瞿波 2010 真空电子技术 02 16]

    [6]

    Vancil B K 2004 Proceedings of the 5th International Vacuum Electron Sources Conference Beijing, China, Sept. 6—10, 2004 p23

    [7]

    Parker R K, Abrams R H, Jr., Danly B G, Levush B 2002 IEEE Trans. Microw. Theory Tech. 50 835

    [8]

    Abrams R H, Levush B, Mondelli A A, Parker R K 2001 IEEE Microwave Magazine 2 61

    [9]

    Hu Y L, Yang Z H, Li B, Li J Q, Huang T, Jin X L, Zhu X F, Liang X P 2010 Acta. Phys. Sin. 59 5439 (in Chinese) [胡玉禄, 杨中海, 李斌, 李建清, 黄桃, 金晓林, 朱小芳, 梁献晋 2010 59 5439]

    [10]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta. Phys. Sin. 58 3118 (in Chinese) [郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 58 3118]

    [11]

    Cui J, Luo J R, Zhu M, Guo Wei 2011 Acta. Phys. Sin. 60 051101 (in Chinese) [崔健, 罗积润, 朱敏, 郭炜 2011 60 051101]

    [12]

    Cui J, Luo J R, Zhu M, Guo Wei 2011 Acta. Phys. Sin. 60 061101 (in Chinese) [崔健, 罗积润, 朱敏, 郭炜 2011 60 061101]

    [13]

    He J, Wei Y Y, Gong Y B, Wang W X 2010 Acta. Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 59 2843]

    [14]

    He J, Wei Y Y, Gong Y B, Wang W X 2010 Acta. Phys. Sin. 59 6659 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥 2010 59 6659]

    [15]

    Zhang C Q, Gong Y B, Wei Y Y, Wang W X 2010 Acta. Phys. Sin. 59 6653 (in Chinese) [张常青, 宫玉彬, 魏彦玉, 王文祥 2010 59 6653]

    [16]

    He J, Wei Y Y, Gong Y B, Wang W X 2011 Chin. Phys. B 20 054102

    [17]

    Zheng R L, Ohlckers P, Chen X Y 2011 IEEE Trans. Electron Devices 58 2164

    [18]

    Wang W X, Tang T, Yue L N, Zhao G Q, Wei Y Y, Gong Y B Clinese Patent 200910060072.4[2009-07022] (in Chinese) [王文祥, 唐涛, 岳玲娜, 赵国庆, 魏彦玉, 宫玉彬 中国专利 200910060072.4 [2009-07-22]]

    [19]

    Tian Y Y, Yue L N, Xu X, Wang W X, Xu J, Wei Y Y, Gong Y B 2011 Proceedings of the 18th Institute of Chinese Electronics Conf. on Microwave tubes Hunan, China, Aug. 20—23 2011 p61(in Chinese) [田艳艳, 岳玲娜, 许雄, 王文祥, 徐进, 魏彦玉, 宫玉彬 2011 中国电子学会真空电子分会第十八届学术年会湖南、张家界 Aug. 20—23 2011 p61]

    [20]

    Xue D H, Wang W X, Yue L N, Wei Y Y, Gong Y B 2006 Vacuum Electronics 03 11 (in Chinese) [薛东海, 王文祥, 岳玲娜, 魏彦玉, 宫玉彬 2006 真空电子技术 03 11]

    [21]

    Tischer F J 1963 IEEE Trans. Microw. Theory Tech. 11 291

    [22]

    Liu J Y, Qin J Z Chinese Journal of Radio Science 1991 Z1 443 (In Chinese) [刘金莹, 秦建章 电波科学学报 1991 Z1 443]

    [23]

    Wilson J D, Kory C L 1995 IEEE Trans. Electron Devices 42 2015

    [24]

    Baig A, Wang J X, Barnett L R, N L Jr, Shin Y M 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, India, Feb. 21—24, 2011 p351

    [25]

    Nguyen K T, Pasour J A 2009 IEEE trans. Electron devices 55 744

    [26]

    Wilson J D, Ramins P, Force D A 1991 Proceedings of International Electron Devices Meeting Washington, USA, Dec. 8—11, 1991 p585

    [27]

    Liu Y, Gong Y B, Wei Y Y, Xu J, Duan Z Y, Wang W X 2010 Proceedings of 8th International Vacuum Electron Sources Conference and NANO carbon Nanjing, China, Oct. 14—16, 2010 p249

  • [1]

    Feng J J, Hu Y F, Cai J, Wu X P, Tang Y 2010 Vacuum Electronics 02 27 (in Chinese) [冯进军, 胡银富, 蔡军, 邬显平, 唐烨 2010 真空电子技术 02 24]

    [2]

    Ding Y G, Liu P K, Zhang Z C, Wang Y 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, India, Feb. 21—24, 2011 p525

    [3]

    Safier P N, Dronov V, Antonsen T M, Qiu J X, Danly B G, Levush B 2006 IEEE Trans. Microw. Theory Tech. 54 3605

    [4]

    Kornfeld G K, Bosch E, Gerum W, Fleury G 2001 IEEE Trans. Electron Devices 48 68

    [5]

    Feng J J, Qu B 2010 Vacuum Electronics 02 16 (in Chinese) [冯进军, 瞿波 2010 真空电子技术 02 16]

    [6]

    Vancil B K 2004 Proceedings of the 5th International Vacuum Electron Sources Conference Beijing, China, Sept. 6—10, 2004 p23

    [7]

    Parker R K, Abrams R H, Jr., Danly B G, Levush B 2002 IEEE Trans. Microw. Theory Tech. 50 835

    [8]

    Abrams R H, Levush B, Mondelli A A, Parker R K 2001 IEEE Microwave Magazine 2 61

    [9]

    Hu Y L, Yang Z H, Li B, Li J Q, Huang T, Jin X L, Zhu X F, Liang X P 2010 Acta. Phys. Sin. 59 5439 (in Chinese) [胡玉禄, 杨中海, 李斌, 李建清, 黄桃, 金晓林, 朱小芳, 梁献晋 2010 59 5439]

    [10]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta. Phys. Sin. 58 3118 (in Chinese) [郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 58 3118]

    [11]

    Cui J, Luo J R, Zhu M, Guo Wei 2011 Acta. Phys. Sin. 60 051101 (in Chinese) [崔健, 罗积润, 朱敏, 郭炜 2011 60 051101]

    [12]

    Cui J, Luo J R, Zhu M, Guo Wei 2011 Acta. Phys. Sin. 60 061101 (in Chinese) [崔健, 罗积润, 朱敏, 郭炜 2011 60 061101]

    [13]

    He J, Wei Y Y, Gong Y B, Wang W X 2010 Acta. Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 59 2843]

    [14]

    He J, Wei Y Y, Gong Y B, Wang W X 2010 Acta. Phys. Sin. 59 6659 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥 2010 59 6659]

    [15]

    Zhang C Q, Gong Y B, Wei Y Y, Wang W X 2010 Acta. Phys. Sin. 59 6653 (in Chinese) [张常青, 宫玉彬, 魏彦玉, 王文祥 2010 59 6653]

    [16]

    He J, Wei Y Y, Gong Y B, Wang W X 2011 Chin. Phys. B 20 054102

    [17]

    Zheng R L, Ohlckers P, Chen X Y 2011 IEEE Trans. Electron Devices 58 2164

    [18]

    Wang W X, Tang T, Yue L N, Zhao G Q, Wei Y Y, Gong Y B Clinese Patent 200910060072.4[2009-07022] (in Chinese) [王文祥, 唐涛, 岳玲娜, 赵国庆, 魏彦玉, 宫玉彬 中国专利 200910060072.4 [2009-07-22]]

    [19]

    Tian Y Y, Yue L N, Xu X, Wang W X, Xu J, Wei Y Y, Gong Y B 2011 Proceedings of the 18th Institute of Chinese Electronics Conf. on Microwave tubes Hunan, China, Aug. 20—23 2011 p61(in Chinese) [田艳艳, 岳玲娜, 许雄, 王文祥, 徐进, 魏彦玉, 宫玉彬 2011 中国电子学会真空电子分会第十八届学术年会湖南、张家界 Aug. 20—23 2011 p61]

    [20]

    Xue D H, Wang W X, Yue L N, Wei Y Y, Gong Y B 2006 Vacuum Electronics 03 11 (in Chinese) [薛东海, 王文祥, 岳玲娜, 魏彦玉, 宫玉彬 2006 真空电子技术 03 11]

    [21]

    Tischer F J 1963 IEEE Trans. Microw. Theory Tech. 11 291

    [22]

    Liu J Y, Qin J Z Chinese Journal of Radio Science 1991 Z1 443 (In Chinese) [刘金莹, 秦建章 电波科学学报 1991 Z1 443]

    [23]

    Wilson J D, Kory C L 1995 IEEE Trans. Electron Devices 42 2015

    [24]

    Baig A, Wang J X, Barnett L R, N L Jr, Shin Y M 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, India, Feb. 21—24, 2011 p351

    [25]

    Nguyen K T, Pasour J A 2009 IEEE trans. Electron devices 55 744

    [26]

    Wilson J D, Ramins P, Force D A 1991 Proceedings of International Electron Devices Meeting Washington, USA, Dec. 8—11, 1991 p585

    [27]

    Liu Y, Gong Y B, Wei Y Y, Xu J, Duan Z Y, Wang W X 2010 Proceedings of 8th International Vacuum Electron Sources Conference and NANO carbon Nanjing, China, Oct. 14—16, 2010 p249

  • [1] 骆新耀, 薛宇哲, 徐彻, 杜创洲, 刘庆想. 基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真.  , 2024, 73(9): 094101. doi: 10.7498/aps.73.20231921
    [2] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响.  , 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [3] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究.  , 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [4] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究.  , 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [5] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究.  , 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [6] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计.  , 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [7] 韦朴, 周明干, 朱露, 张劲, 王雪峰, 吕东亚, 陈宁, 杨明华, 孙小菡. 螺旋线慢波结构夹持性能测试方法研究.  , 2013, 62(9): 094401. doi: 10.7498/aps.62.094401
    [8] 刘漾, 魏彦玉, 沈飞, 许雄, 刘洋, 赖剑强, 黄明智, 唐涛, 宫玉彬. 开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究.  , 2012, 61(16): 168401. doi: 10.7498/aps.61.168401
    [9] 胡权. 变周期大结构低压工作折叠波导行波管的理论与模拟研究.  , 2012, 61(1): 014101. doi: 10.7498/aps.61.014101
    [10] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究.  , 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [11] 赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬. 140GHz大功率交错双栅行波管的设计和模拟研究.  , 2012, 61(17): 178501. doi: 10.7498/aps.61.178501
    [12] 阮存军, 王树忠, 韩莹, 李庆生. 高传输通过率带状电子注聚焦与传输特性的研究.  , 2011, 60(8): 084105. doi: 10.7498/aps.60.084105
    [13] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计.  , 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [14] 赵鼎. 关于闭合及偏置PCM结构约束带状电子注可行性的研究.  , 2010, 59(3): 1712-1720. doi: 10.7498/aps.59.1712
    [15] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算.  , 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [16] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析.  , 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [17] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究.  , 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [18] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究.  , 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [19] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论.  , 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [20] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究.  , 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
计量
  • 文章访问数:  7351
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-13
  • 修回日期:  2011-12-04
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map