搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟核素固化体Gd2Zr2-xCexO7(0≤ x≤ 2.0)的物相及化学稳定性研究

卢喜瑞 董发勤 胡淞 王晓丽 吴彦霖

引用本文:
Citation:

模拟核素固化体Gd2Zr2-xCexO7(0≤ x≤ 2.0)的物相及化学稳定性研究

卢喜瑞, 董发勤, 胡淞, 王晓丽, 吴彦霖

Phase and chemical stability of simulated waste forms Gd2Zr2-xCexO7(0≤ x≤ 2.0)

Lu Xi-Rui, Dong Fa-Qin, Hu Song, Wang Xiao-Li, Wu Yan-Lin
PDF
导出引用
  • 为研究钆锆烧绿石固化Pu(Ⅳ)的相变化情况及化学稳定性, 以Gd2O3, ZrO2为原料, Ce(Ⅳ)作为Pu(Ⅳ)的模拟替代物质, 采用冷压热烧结的方法制备出Gd2Zr2-xCexO7(0≤ x≤ 2.0)系列样品. 分别在40 °C和70 °C的合成海水中, 对固化体的长期浸出性能进行研究. 借助粉末X射线衍射仪对所制备样品的物相信息进行收集, 利用等离子体质谱仪对固化体的浸出浓度数据进行分析. 研究结果表明: 当x ≤0.08时, 固化体保持为烧绿石相; 当x>0.08时, 固化体转变为具有缺陷的萤石型结构相. 固化体中Gd3+, Zr4+和Ce4+在合成海水中, 随着浸泡时间的延长浸出浓度逐渐上升, 70 °C下的浸出浓度高于40 °C下的浸出浓度. 在42 d时, 固化体中Gd3+的最大浸出浓度在0.032 μg·ml-1以下, Zr4+的最大浸出浓度在0.003 μg·ml-1以下; Ce4+的最大浸出浓度在0.032 μg·ml-1以下.
    In order to investigate phase change and chemical stability of pyrochlore Gd2Zr2O7 used for immobilizing Pu(Ⅳ), tetravalent cerium is used as the simulacrums for plutonium with tetravalence, and Gd2Zr2-xCexO7(0≤ x≤ 2.0) series samples are successfully synthesized by high temperature solid reaction and using Gd2O3 and ZrO2 powders as starting materials. The experiments of long-term chemical stability are conducted in synthetic seawater at 40 °C and 70 °C separately. The XRD diffractive data and extraction ratio of as-gained samples are collected by the help of X-ray diffraction (XRD) instrument and inductively coupled plasma mass spectrometry. The results indicate that the phases of compounds change from pyrochlore to fluorite-type phase when the value of x is more than 0.08. Extraction ratios of Gd3+, Zr4+ and Ce4+ in waste forms increase with the increase of immersion time in synthetic seawater. The extraction ratio of waste form at 70 °C is higher than at 40 °C. The highest extraction ratios of Gd3+, Zr4+ and Ce4+ for 42 days are no more than 0.032, 0.003 and 0.032 μg·ml-1 respectively.
    • 基金项目: 国家高技术研究发展计划(863)计划重点项目(批准号: 2009AA050703), 国家自然科学基金青年科学基金(批准号: 21007052), 四川大学辐射物理及技术教育部重点实验室基金(批准号: 2011-03), 西南科技大学核废物与环境安全国防重点学科实验室基金(批准号: 11zxnk09)和西南科技大学青年基金(批准号: 11zx3108)资助的课题.
    • Funds: Project supported by the Key Project of National High Technology Research and Development Program (863Program) of China (Grant No. 2009AA050703), the Young Scientists Fund of National Natural Science Foundation of China (Grant No. 21007052), the Foundation of Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education of China (Grant No. 2011-03), the Foundation of Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security (Southwest University of Science and Technology) (Grant No. 11zxnk09), and the Youth Foundation of Southwest University of Science and Technology (Grant No. 11zx3108).
    [1]

    Hatch L P 1953 American Scientist 41 410

    [2]

    Ringwood A E, Kesson S E, Ware N G, Hibberson W, Major A 1979 Nature 15 278

    [3]

    Clarke D R 1983 Annual Review of Materials Science 13 191

    [4]

    Robert L E J 1990 Annual Review of Nuclear and Particle Science 40 79

    [5]

    Donald I W, Metcalfe B L, Taylor R N J 1997 Journal of Materials Science 32 5851

    [6]

    Weber W J, Ewing R C, Angell C A, Arnold G W, Cormack A N, Delaye J M, Griscom D L, Hobbs L W, Navrotsky. A, Price D L, Stoneham A M, Weinberg M C 1997a Journal of Materials Research 12 1946

    [7]

    Weber W J, Ewing R C, Angell C A 1998 Journal of Materials Research 13 1434

    [8]

    Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Govidan Kutty K V 1999 Journal of Materials Research 14 4470

    [9]

    Weber W J, Ewing R C 2000 Science 289 5487

    [10]

    Ewing R C, Weber W J, Lian J 2004 Journal of Applied Physics 95 5949

    [11]

    Lu X R, Cui C L, Zhang D, Chen M J, Yang Y K 2011 Acta Phys. Sin. 60 078901 (in chinese) [卢喜瑞, 崔春龙, 张东, 陈梦君, 杨岩凯 2011 60 078901]

  • [1]

    Hatch L P 1953 American Scientist 41 410

    [2]

    Ringwood A E, Kesson S E, Ware N G, Hibberson W, Major A 1979 Nature 15 278

    [3]

    Clarke D R 1983 Annual Review of Materials Science 13 191

    [4]

    Robert L E J 1990 Annual Review of Nuclear and Particle Science 40 79

    [5]

    Donald I W, Metcalfe B L, Taylor R N J 1997 Journal of Materials Science 32 5851

    [6]

    Weber W J, Ewing R C, Angell C A, Arnold G W, Cormack A N, Delaye J M, Griscom D L, Hobbs L W, Navrotsky. A, Price D L, Stoneham A M, Weinberg M C 1997a Journal of Materials Research 12 1946

    [7]

    Weber W J, Ewing R C, Angell C A 1998 Journal of Materials Research 13 1434

    [8]

    Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Govidan Kutty K V 1999 Journal of Materials Research 14 4470

    [9]

    Weber W J, Ewing R C 2000 Science 289 5487

    [10]

    Ewing R C, Weber W J, Lian J 2004 Journal of Applied Physics 95 5949

    [11]

    Lu X R, Cui C L, Zhang D, Chen M J, Yang Y K 2011 Acta Phys. Sin. 60 078901 (in chinese) [卢喜瑞, 崔春龙, 张东, 陈梦君, 杨岩凯 2011 60 078901]

  • [1] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究.  , 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [2] 王烈林, 李江博, 谢华, 邓司浩, 张可心, 易发成. 铀在Nd2Zr2O7烧绿石中的固溶量及重离子辐照效应.  , 2018, 67(19): 192801. doi: 10.7498/aps.67.20181204
    [3] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究.  , 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [4] 牟婉君, 谢翔, 李兴亮, 余钱红, 张锐, 吕开, 唐惠, 周官宏, 魏洪源. (Sr1-1.5xYx)TiO3模拟固化90Y的稳定性研究.  , 2014, 63(18): 182802. doi: 10.7498/aps.63.182802
    [5] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究.  , 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [6] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性.  , 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [7] 段涛, 卢喜瑞, 刘小楠, 竹文坤, 黄叶菊. Gd2-xNdxZr2O7(Nd=An(Ⅲ), 0≤ x ≤ 2.0)模拟固化体固溶量与其物相、密度、硬度之间的关系.  , 2012, 61(21): 212801. doi: 10.7498/aps.61.212801
    [8] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究.  , 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [9] 方智恒, 王伟, 贾果, 董佳钦, 熊俊, 郑无敌, 李永升, 罗平庆, 傅思祖, 顾援, 王世绩. 高温烧蚀初始印记及其瑞利-泰勒不稳定性发展的研究.  , 2009, 58(10): 7057-7061. doi: 10.7498/aps.58.7057
    [10] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算.  , 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [11] 郭媛媛, 陈晓松. 二元高斯核模型的相不稳定性研究.  , 2005, 54(12): 5755-5762. doi: 10.7498/aps.54.5755
    [12] 王文全, 苏 峰, 刘春杰, 王学凤, 闫 羽, 金汉民. R3(Fe1-xCox)29-yCry(R=Gd, Sm)化合物相稳定性研究.  , 2003, 52(10): 2508-2513. doi: 10.7498/aps.52.2508
    [13] 刘 鹏, 杨同青, 王志宏, 徐 卓, 张良莹, 姚 熹. PLZST反铁电陶瓷电场诱导相变与相稳定性的研究.  , 1998, 47(10): 1727-1733. doi: 10.7498/aps.47.1727
    [14] 王合英, 姜恩永, 马振伟, 何元金. Ti掺杂对α″-Fe16N2相稳定性的影响.  , 1998, 47(11): 1912-1916. doi: 10.7498/aps.47.1912
    [15] 张家明, 陆卫, 沈学础. 六卤化金属化合物晶体晶格非稳定性量子化学计算.  , 1995, 44(11): 1798-1804. doi: 10.7498/aps.44.1798
    [16] 胡承正. 聚二苯分子中基态结构的稳定性及各种凝聚相.  , 1992, 41(8): 1368-1373. doi: 10.7498/aps.41.1368
    [17] 王文魁, 何寿安, 岩崎博, 庄野安彦, 后藤恒昭. 高温高压下非晶Co80B20合金的相稳定性.  , 1984, 33(7): 914-920. doi: 10.7498/aps.33.914
    [18] 王心宜, 林磊. 向列相液晶电流体不稳定性——偏置电场效应.  , 1983, 32(12): 1565-1573. doi: 10.7498/aps.32.1565
    [19] 王文魁. A15相稳定性的判据.  , 1979, 28(3): 435-442. doi: 10.7498/aps.28.435
    [20] 霍裕平. 等离子体的静态稳定性.  , 1977, 26(2): 149-154. doi: 10.7498/aps.26.149
计量
  • 文章访问数:  6013
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-06
  • 修回日期:  2012-01-12
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map