-
基于单电子晶体管与金属氧化物半导体混合结构构造出一种一维离散混沌系统. 研究了单电子晶体管与金属氧化物半导体串联混合结构的电压传输特性,并建立了相应的N型分段线性函数模型. 基于该模型实现了一维离散映射系统,分析了它的一维映射过程、分岔图和Lyapunov指数谱等动力学特性. 最后利用单电子晶体管与金属氧化物半导体混合电路设计出该离散混沌系统的电路结构,仿真验证与理论分析一致. 研究结果表明,利用单电子晶体管与金属氧化物半导体混合结构设计的离散混沌电路不仅结构非常简单,功耗很低, 而且有利于混沌系统的集成和应用.
-
关键词:
- 离散系统 /
- Lyapunov指数谱 /
- 分岔 /
- 电路实现
A one-dimensional discrete chaotic system is constructed based on the hybrid architecture of single-electron transistor and metal oxide semiconductor in this paper. Voltage transfer characteristics of the parallel architecture of single-electron transistor and metal oxide semiconductor are investigated, and the corresponding N-shape piecewise linear function model is established. Based on this model a one-dimensional discrete mapping system is first constructed, the dynamics of the system is then analyzed including one-dimensional mapping process, bifurcation diagram and Lyapunov exponent spectrum and the corresponding discrete chaotic system is finally designed through the electronic circuits of the hybrid architecture. The simulation result is consistent with the theoretical analysis. All these indicate that discrete chaotic system designed by the hybrid architecture of single-electron transistor and metal oxide semiconductor has some advantages such as simple circuit structure and low power dissipation, which are good for the integration and application of chaotic system.-
Keywords:
- discrete system /
- Lyapunov exponent spectrum /
- bifurcation /
- circuit realization
[1] Zhong M, Tang G N 2010 Acta Phys. Sin. 59 3070 (in Chinese) [钟敏, 唐国宁 2010 59 3070]
[2] Chen G R, Dong X 1998 Form Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[3] Long M, Qiu S S 2007 Chin. Phys. 16 2254
[4] Guo H J, Liu D, Zhao G Z 2011 Acta Phys. Sin. 60 010510 (in Chinese) [郭会军, 刘丁, 赵光宙 2011 60 010510]
[5] Rodriguez V A, Huertas J L, Rueda A, Perez V B, Chua L O 1987 Proc. IEEE 75 1090
[6] Tanaka H, Sato S, Nakajima K 2000 Analog Integr. Circuits Signal Process. 25 329
[7] Chen J F, Cheng L, Liu Y, Peng J H 2003 Acta Phys. Sin. 52 18 (in Chinese) [陈菊芳, 程丽, 刘颖, 彭建华 2003 52 18]
[8] Herrena R, Horio Y, Suyama K 1997 Proceedings of the International Symposium on Nonlinear Theory and Its Application (Honolulu: IEEE) p625
[9] Mandal S, Banerjee S 2004 IEEE Trans. Circuits Syst. Regul. Pap. 51 1708
[10] Huang J, Momenzadeh M, Lombardi F 2007 IEEE Des. Test Comput. 24 303
[11] Ionescu A M, Mahapatra S, Pott V 2004 IEEE Electron Device Lett. 25 411
[12] Delgado-Restituto M, RodrÏguez-Vázquez A 2002 Proc. IEEE 90 747
[13] Baillieul J, Brocket R W, Washburn R B 1980 IEEE Trans. Circuits Syst. 27 990
[14] Hsu C, Gobovic D, Zaghloul M E, Szu H H 1996 IEEE Trans. Neural Networks 7 1339
-
[1] Zhong M, Tang G N 2010 Acta Phys. Sin. 59 3070 (in Chinese) [钟敏, 唐国宁 2010 59 3070]
[2] Chen G R, Dong X 1998 Form Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[3] Long M, Qiu S S 2007 Chin. Phys. 16 2254
[4] Guo H J, Liu D, Zhao G Z 2011 Acta Phys. Sin. 60 010510 (in Chinese) [郭会军, 刘丁, 赵光宙 2011 60 010510]
[5] Rodriguez V A, Huertas J L, Rueda A, Perez V B, Chua L O 1987 Proc. IEEE 75 1090
[6] Tanaka H, Sato S, Nakajima K 2000 Analog Integr. Circuits Signal Process. 25 329
[7] Chen J F, Cheng L, Liu Y, Peng J H 2003 Acta Phys. Sin. 52 18 (in Chinese) [陈菊芳, 程丽, 刘颖, 彭建华 2003 52 18]
[8] Herrena R, Horio Y, Suyama K 1997 Proceedings of the International Symposium on Nonlinear Theory and Its Application (Honolulu: IEEE) p625
[9] Mandal S, Banerjee S 2004 IEEE Trans. Circuits Syst. Regul. Pap. 51 1708
[10] Huang J, Momenzadeh M, Lombardi F 2007 IEEE Des. Test Comput. 24 303
[11] Ionescu A M, Mahapatra S, Pott V 2004 IEEE Electron Device Lett. 25 411
[12] Delgado-Restituto M, RodrÏguez-Vázquez A 2002 Proc. IEEE 90 747
[13] Baillieul J, Brocket R W, Washburn R B 1980 IEEE Trans. Circuits Syst. 27 990
[14] Hsu C, Gobovic D, Zaghloul M E, Szu H H 1996 IEEE Trans. Neural Networks 7 1339
计量
- 文章访问数: 7855
- PDF下载量: 621
- 被引次数: 0