搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性力学的插值型重构核粒子法

李中华 秦义校 崔小朝

引用本文:
Citation:

弹性力学的插值型重构核粒子法

李中华, 秦义校, 崔小朝

Interpolating reproducing kernel particle method for elastic mechanics

Li Zhong-Hua, Qin Yi-Xiao, Cui Xiao-Chao
PDF
导出引用
  • 采用具有离散点插值特性的重构核粒子法形函数, 较精确地重构弹性体 变形的位移试函数, 再与弹性力学的最小势能原理相结合, 形成新的分析弹性力 学平面问题的插值型重构核粒子法. 由于插值型重构核粒子法形函数具有点插值特性和不低于核函数 的高阶光滑性, 因而既克服了多数无网格方法处理本质边界条件的困难, 也保证了较高的数值精度. 与早期的无网格方法相比, 本方法具有精度高、解题规模较小、可直接施加边界条件等优点. 通过对典型弹性力学问题数值模拟, 验证了所提方法的有效性和正确性.
    The displacement trial function is reconstructed by reproducing kernel particle shape function method with interpolation property on discrete points, then combining the principle of minimum potential energy of elasticity, the new interpolating reproducing kernel particle method to analyze the plane problem of elasticity is obtained. Because interpolation reproducing kernel particle shape function has a point interpolation property and no less than the high-order smoothness of kernel function, the difficulty for most of meshless methods to be used to deal with the essential boundary conditions is already overcome, and the high numerical accuracy is assured as well. Compared with the early meshless methods, this method has a high accuracy and a small scale of solving problem and it can be directly applied to boundary conditions. Numerical results for some typical examples of elasticity prove the proposed method to be valid.
    • 基金项目: 国家自然科学基金(批准号: 10871124)和山西省自然科学基金(批准号: 20051061)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10871124) and the Natural Science Foundation of Shanxi Province, China (Grant No. 20051061).
    [1]

    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Meth. Appl. Mech. Eng. 139 3

    [2]

    Li S F, Liu W K 2002 Appl. Mech. Rev. 55 134

    [3]

    Zhang X, Song K Z, Lu M W 2003 Chin. J. Comput. Mech. 20 731 (in Chinese) [张雄, 宋康祖, 陆明万 2003 计算力学学报 20 731]

    [4]

    Gao H F, Cheng Y M 2010 Int. J. Comput. Meth. 7 55

    [5]

    Wang J F, Cheng Y M 2011 Chin. Phys. B 20 030206

    [6]

    Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民、嵇醒、贺鹏飞 2004 力学学报 36 43]

    [7]

    Cheng R J, Cheng Y M 2011 Acta Phys. Sin. 60 070206 (in Chinese) [程荣军、程玉民2011 60 070206]

    [8]

    Gao H F, Cheng Y M 2009 Acta Mech. Sin. 41 480 (in Chinese) [高洪芬, 程玉民 2009 力学学报 41 480]

    [9]

    Liu W K, Jun S, Zhang Y F 1995 Int. J. Numer. Meth. Eng. 20 1081

    [10]

    Liu W K, Chen Y, Uras R A, Chang C T 1996 Comput. Meth. Appl. Mech. Eng. 139 91

    [11]

    Chen J S, Pan C, Wu C T, Liu W K 1996 Comput. Meth. Appl. Mech. Eng. 139 195

    [12]

    Li S, Liu W K 1997 Comput. Meth. Appl. Mech. Eng. 143 113

    [13]

    Li S, Liu W K 1999 Int. J. Numer. Meth. Eng. 45 251

    [14]

    Chen J S, Yoon S, Wang H P, Liu W K 2000 Comput. Meth. Appl. Mech. Eng. 181 117

    [15]

    Han W M, Meng X P 2001 Comput. Meth. Appl. Mech. Eng. 190 6157

    [16]

    Chen J S, Han W, You Y, Meng X 2003 Int. J. Numer. Meth. Eng. 56 935

    [17]

    Cheng Y M, Peng M J 2005 Sci. China G 48 641

    [18]

    Cheng Y M, Li J H 2006 Sci. China G 49 46

    [19]

    Dai B D, Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese) [戴保东, 程玉民 2007 56 597]

    [20]

    Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258

    [21]

    Cheng R J, Cheng Y M 2008 Appl. Numer. Math. 58 884

    [22]

    Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]

    [23]

    Li S C, Cheng Y M 2004 Acta Mech. Sin. 36 496 (in Chinese) [李树忱, 程玉民 2004 力学学报 36 496]

    [24]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]

    [25]

    Cheng R J, Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese) [程荣军, 程玉民 2008 57 6037]

    [26]

    Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3216 (in Chinese) [秦义校, 程玉民 2006 55 3216]

    [27]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]

    [28]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese) [陈丽, 程玉民 2008 57 6047]

  • [1]

    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Meth. Appl. Mech. Eng. 139 3

    [2]

    Li S F, Liu W K 2002 Appl. Mech. Rev. 55 134

    [3]

    Zhang X, Song K Z, Lu M W 2003 Chin. J. Comput. Mech. 20 731 (in Chinese) [张雄, 宋康祖, 陆明万 2003 计算力学学报 20 731]

    [4]

    Gao H F, Cheng Y M 2010 Int. J. Comput. Meth. 7 55

    [5]

    Wang J F, Cheng Y M 2011 Chin. Phys. B 20 030206

    [6]

    Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民、嵇醒、贺鹏飞 2004 力学学报 36 43]

    [7]

    Cheng R J, Cheng Y M 2011 Acta Phys. Sin. 60 070206 (in Chinese) [程荣军、程玉民2011 60 070206]

    [8]

    Gao H F, Cheng Y M 2009 Acta Mech. Sin. 41 480 (in Chinese) [高洪芬, 程玉民 2009 力学学报 41 480]

    [9]

    Liu W K, Jun S, Zhang Y F 1995 Int. J. Numer. Meth. Eng. 20 1081

    [10]

    Liu W K, Chen Y, Uras R A, Chang C T 1996 Comput. Meth. Appl. Mech. Eng. 139 91

    [11]

    Chen J S, Pan C, Wu C T, Liu W K 1996 Comput. Meth. Appl. Mech. Eng. 139 195

    [12]

    Li S, Liu W K 1997 Comput. Meth. Appl. Mech. Eng. 143 113

    [13]

    Li S, Liu W K 1999 Int. J. Numer. Meth. Eng. 45 251

    [14]

    Chen J S, Yoon S, Wang H P, Liu W K 2000 Comput. Meth. Appl. Mech. Eng. 181 117

    [15]

    Han W M, Meng X P 2001 Comput. Meth. Appl. Mech. Eng. 190 6157

    [16]

    Chen J S, Han W, You Y, Meng X 2003 Int. J. Numer. Meth. Eng. 56 935

    [17]

    Cheng Y M, Peng M J 2005 Sci. China G 48 641

    [18]

    Cheng Y M, Li J H 2006 Sci. China G 49 46

    [19]

    Dai B D, Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese) [戴保东, 程玉民 2007 56 597]

    [20]

    Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258

    [21]

    Cheng R J, Cheng Y M 2008 Appl. Numer. Math. 58 884

    [22]

    Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]

    [23]

    Li S C, Cheng Y M 2004 Acta Mech. Sin. 36 496 (in Chinese) [李树忱, 程玉民 2004 力学学报 36 496]

    [24]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]

    [25]

    Cheng R J, Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese) [程荣军, 程玉民 2008 57 6037]

    [26]

    Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3216 (in Chinese) [秦义校, 程玉民 2006 55 3216]

    [27]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]

    [28]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese) [陈丽, 程玉民 2008 57 6047]

  • [1] 任金莲, 蒋戎戎, 陆伟刚, 蒋涛. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟.  , 2020, 69(8): 080202. doi: 10.7498/aps.69.20191829
    [2] 张鹏轩, 彭妙娟. 黏弹性问题的插值型无单元Galerkin方法.  , 2019, 68(17): 170203. doi: 10.7498/aps.68.20191047
    [3] 杜超凡, 章定国. 基于无网格点插值法的旋转悬臂梁的动力学分析.  , 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [4] 杜红秀, 魏宏, 秦义校, 李中华, 王同尊. 轴对称构件受力分析的插值粒子法.  , 2015, 64(10): 100204. doi: 10.7498/aps.64.100204
    [5] 范纪华, 章定国. 旋转柔性悬臂梁动力学的Bezier插值离散方法研究.  , 2014, 63(15): 154501. doi: 10.7498/aps.63.154501
    [6] 彭妙娟, 刘茜. 黏弹性问题的改进的复变量无单元Galerkin方法.  , 2014, 63(18): 180203. doi: 10.7498/aps.63.180203
    [7] 杨秀丽, 戴保东, 栗振锋. 弹性力学的复变量无网格局部 Petrov-Galerkin 法.  , 2012, 61(5): 050204. doi: 10.7498/aps.61.050204
    [8] 程荣军, 程玉民. 弹性力学的无单元Galerkin方法的误差估计.  , 2011, 60(7): 070206. doi: 10.7498/aps.60.070206
    [9] 郑保敬, 戴保东. 位势问题改进的无网格局部Petrov-Galerkin法.  , 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [10] 曹鸿霞, 张 宁. 磁电双层膜层间耦合的弹性力学研究.  , 2008, 57(5): 3237-3243. doi: 10.7498/aps.57.3237
    [11] 程荣军, 程玉民. 势问题的无单元Galerkin方法的误差估计.  , 2008, 57(10): 6037-6046. doi: 10.7498/aps.57.6037
    [12] 陈 丽, 程玉民. 弹性力学的复变量重构核粒子法.  , 2008, 57(1): 1-10. doi: 10.7498/aps.57.1
    [13] 谢根全, 夏 平. 基于微极性弹性力学的碳纳米管中波的传播特性.  , 2007, 56(12): 7070-7077. doi: 10.7498/aps.56.7070
    [14] 戴保东, 程玉民. 势问题的径向基函数——局部边界积分方程方法.  , 2007, 56(2): 597-603. doi: 10.7498/aps.56.597
    [15] 程荣军, 程玉民. 带源参数的热传导反问题的无网格方法.  , 2007, 56(10): 5569-5574. doi: 10.7498/aps.56.5569
    [16] 李树忱, 程玉民, 李术才. 动态断裂力学的无网格流形方法.  , 2006, 55(9): 4760-4766. doi: 10.7498/aps.55.4760
    [17] 秦义校, 程玉民. 弹性力学的重构核粒子边界无单元法.  , 2006, 55(7): 3215-3222. doi: 10.7498/aps.55.3215
    [18] 程玉民, 李九红. 弹性力学的复变量无网格方法.  , 2005, 54(10): 4463-4471. doi: 10.7498/aps.54.4463
    [19] 胡海昌. 球面各向同性体弹性力学的一般理论.  , 1954, 10(1): 57-70. doi: 10.7498/aps.10.57
    [20] 胡海昌. 横观各向同性体的弹性力学的空间问题.  , 1953, 9(2): 130-147. doi: 10.7498/aps.9.130
计量
  • 文章访问数:  7663
  • PDF下载量:  926
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-06
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回
Baidu
map