-
石墨烯是近年纳米材料研究领域的一个热点,其独特的热学性质受到了广泛关注,为了实现对石墨烯传热特性的预期与可控,利用氮掺杂和空位缺陷对石墨烯进行改性.采用非平衡态分子动力学方法研究了扶手形石墨烯纳米带中氮掺杂浓度、位置及空位缺陷对热导率影响并从理论上分析了热导率变化原因.研究表明氮掺杂后石墨烯纳米带热导率急剧下降,氮浓度达到30%时,热导率下降了75.8%;氮掺杂位置从冷浴向热浴移动过程中,热导率先近似的呈线性下降后上升;同时发现单原子三角形氮掺杂结构比多原子平行氮掺杂结构对热传递抑制作用强;空位缺陷的存在降低了石墨烯纳米带热导率,空位缺陷位置从冷浴向热浴移动过程中,热导率先下降后上升,空位缺陷距离冷浴边缘长度相对于整个石墨烯纳米带长度的3/10时,热导率达到最小.石墨烯纳米带热导率降低的原因主要源于结构中声子平均自由程和声子移动速度随着氮掺杂浓度、位置及空位缺陷位置的改变发生了明显变化.这些结果有利于纳米尺度下对石墨烯传热过程进行调控及为新材料的合成应用提供了理论支持.Graphene has become one of the most exciting topics of nano-material research in recent years because of its unique thermal properties. Nitrogen doping and vacancy defects are utilized to modify the characteristics of graphene in order to understand and control the heat transfer process of graphene. We use nonequilibrium molecular dynamics to calculate the thermal conductivity of armchair graphenenanoribbon affected by nitrogen doping concentration and nitrogen doping location, and analyze theoretically the cause of the change of thermal conductivity. The research shows that the thermal conductivity drops sharply when graphenenanoribbon is doped by nitrogen. When nitrogen doping concentration is up to 30%, the thermal conductivity drops by 75.8%. When the location of nitrogen doping moves from the cold bath to the thermal bath, the thermal conductivity first decreases and then increases. And it is also found that the structure of triangular single-nitrogen-doped graphenenanoribbon is inhibited more strongly in the heat transfer process than that of parallel various-nitrogen-doped graphenenanoribbon. Vacancy defects reduce the thermal conductivity of graphenenanoribbon. When the location of vacancy moves from the cold bath to thermal bath, the thermal conductivity first decreases and then increases. When the vacancy position is located at 3/10 of the entire length relative to the edge of the cold bath, the thermal conductivity reaches a minimum value. This is because of the phonon velocity and phonon mean free path varying with the concentration and the location of nitrogen doping and the location of vacancy defect. These results are useful to control the heat transfer process of nanoscalegraphene and provide theoretical support for the synthesis of new materials.
-
Keywords:
- graphenenanoribbons /
- nitrogen doping /
- vacancy /
- thermal conductivity
[1] Novoselov K S, Geim A K 2004 Science 306 666
[2] [3] Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911
[4] Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112
[5] [6] [7] Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103
[8] [9] Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107
[10] [11] Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491
[12] [13] Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082
[14] Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705
[15] [16] Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730
[17] [18] [19] Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705
[20] [21] Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783
[22] [23] Tersoff J 1989 Phys. Rew. B 39 5566
[24] [25] Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48
[26] Shi L P, Xiong S J 2009 Phys. Lett. A 373 563
[27] [28] [29] Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413
[30] Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107
[31] [32] Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752
[33] [34] Xinran W 2009 Science 324 768
[35] [36] [37] Ying W, Yuyan S 2010 ACS Nano 4 1790
[38] [39] Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301
[40] [41] Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963
[42] Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963
[43] [44] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[45] [46] [47] Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885
[48] [49] Chang C W, Okawa D 2006 Science 314 1121
[50] [51] Gang Wu 2007 Phys. Rew. B 76 085424
[52] Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301
[53] [54] [55] Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211
-
[1] Novoselov K S, Geim A K 2004 Science 306 666
[2] [3] Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911
[4] Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112
[5] [6] [7] Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103
[8] [9] Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107
[10] [11] Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491
[12] [13] Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082
[14] Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705
[15] [16] Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730
[17] [18] [19] Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705
[20] [21] Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783
[22] [23] Tersoff J 1989 Phys. Rew. B 39 5566
[24] [25] Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48
[26] Shi L P, Xiong S J 2009 Phys. Lett. A 373 563
[27] [28] [29] Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413
[30] Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107
[31] [32] Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752
[33] [34] Xinran W 2009 Science 324 768
[35] [36] [37] Ying W, Yuyan S 2010 ACS Nano 4 1790
[38] [39] Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301
[40] [41] Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963
[42] Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963
[43] [44] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[45] [46] [47] Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885
[48] [49] Chang C W, Okawa D 2006 Science 314 1121
[50] [51] Gang Wu 2007 Phys. Rew. B 76 085424
[52] Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301
[53] [54] [55] Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211
计量
- 文章访问数: 10117
- PDF下载量: 1393
- 被引次数: 0