搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟

杨平 王晓亮 李培 王欢 张立强 谢方伟

引用本文:
Citation:

氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟

杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟

The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics

Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei
PDF
导出引用
  • 石墨烯是近年纳米材料研究领域的一个热点,其独特的热学性质受到了广泛关注,为了实现对石墨烯传热特性的预期与可控,利用氮掺杂和空位缺陷对石墨烯进行改性.采用非平衡态分子动力学方法研究了扶手形石墨烯纳米带中氮掺杂浓度、位置及空位缺陷对热导率影响并从理论上分析了热导率变化原因.研究表明氮掺杂后石墨烯纳米带热导率急剧下降,氮浓度达到30%时,热导率下降了75.8%;氮掺杂位置从冷浴向热浴移动过程中,热导率先近似的呈线性下降后上升;同时发现单原子三角形氮掺杂结构比多原子平行氮掺杂结构对热传递抑制作用强;空位缺陷的存在降低了石墨烯纳米带热导率,空位缺陷位置从冷浴向热浴移动过程中,热导率先下降后上升,空位缺陷距离冷浴边缘长度相对于整个石墨烯纳米带长度的3/10时,热导率达到最小.石墨烯纳米带热导率降低的原因主要源于结构中声子平均自由程和声子移动速度随着氮掺杂浓度、位置及空位缺陷位置的改变发生了明显变化.这些结果有利于纳米尺度下对石墨烯传热过程进行调控及为新材料的合成应用提供了理论支持.
    Graphene has become one of the most exciting topics of nano-material research in recent years because of its unique thermal properties. Nitrogen doping and vacancy defects are utilized to modify the characteristics of graphene in order to understand and control the heat transfer process of graphene. We use nonequilibrium molecular dynamics to calculate the thermal conductivity of armchair graphenenanoribbon affected by nitrogen doping concentration and nitrogen doping location, and analyze theoretically the cause of the change of thermal conductivity. The research shows that the thermal conductivity drops sharply when graphenenanoribbon is doped by nitrogen. When nitrogen doping concentration is up to 30%, the thermal conductivity drops by 75.8%. When the location of nitrogen doping moves from the cold bath to the thermal bath, the thermal conductivity first decreases and then increases. And it is also found that the structure of triangular single-nitrogen-doped graphenenanoribbon is inhibited more strongly in the heat transfer process than that of parallel various-nitrogen-doped graphenenanoribbon. Vacancy defects reduce the thermal conductivity of graphenenanoribbon. When the location of vacancy moves from the cold bath to thermal bath, the thermal conductivity first decreases and then increases. When the vacancy position is located at 3/10 of the entire length relative to the edge of the cold bath, the thermal conductivity reaches a minimum value. This is because of the phonon velocity and phonon mean free path varying with the concentration and the location of nitrogen doping and the location of vacancy defect. These results are useful to control the heat transfer process of nanoscalegraphene and provide theoretical support for the synthesis of new materials.
    • 基金项目: 国家自然科学基金(批准号:61076098和50875115),江苏省自然科学基金(批准号:BK2008227);江苏省研究生创新项目(批准号:CX10B_252Z)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076098, 50875115), the Natural Science Foundation of Jiangsu Province of China (Grant No. 2008227), and the Graduate Innovative Project of Jiangsu Province (Grant No. CX10B 252Z).
    [1]

    Novoselov K S, Geim A K 2004 Science 306 666

    [2]
    [3]

    Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911

    [4]

    Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [5]
    [6]
    [7]

    Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103

    [8]
    [9]

    Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107

    [10]
    [11]

    Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491

    [12]
    [13]

    Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082

    [14]

    Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705

    [15]
    [16]

    Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730

    [17]
    [18]
    [19]

    Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705

    [20]
    [21]

    Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783

    [22]
    [23]

    Tersoff J 1989 Phys. Rew. B 39 5566

    [24]
    [25]

    Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48

    [26]

    Shi L P, Xiong S J 2009 Phys. Lett. A 373 563

    [27]
    [28]
    [29]

    Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413

    [30]

    Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107

    [31]
    [32]

    Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752

    [33]
    [34]

    Xinran W 2009 Science 324 768

    [35]
    [36]
    [37]

    Ying W, Yuyan S 2010 ACS Nano 4 1790

    [38]
    [39]

    Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301

    [40]
    [41]

    Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963

    [42]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [43]
    [44]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [45]
    [46]
    [47]

    Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885

    [48]
    [49]

    Chang C W, Okawa D 2006 Science 314 1121

    [50]
    [51]

    Gang Wu 2007 Phys. Rew. B 76 085424

    [52]

    Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301

    [53]
    [54]
    [55]

    Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211

  • [1]

    Novoselov K S, Geim A K 2004 Science 306 666

    [2]
    [3]

    Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911

    [4]

    Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [5]
    [6]
    [7]

    Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103

    [8]
    [9]

    Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107

    [10]
    [11]

    Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491

    [12]
    [13]

    Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082

    [14]

    Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705

    [15]
    [16]

    Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730

    [17]
    [18]
    [19]

    Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705

    [20]
    [21]

    Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783

    [22]
    [23]

    Tersoff J 1989 Phys. Rew. B 39 5566

    [24]
    [25]

    Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48

    [26]

    Shi L P, Xiong S J 2009 Phys. Lett. A 373 563

    [27]
    [28]
    [29]

    Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413

    [30]

    Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107

    [31]
    [32]

    Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752

    [33]
    [34]

    Xinran W 2009 Science 324 768

    [35]
    [36]
    [37]

    Ying W, Yuyan S 2010 ACS Nano 4 1790

    [38]
    [39]

    Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301

    [40]
    [41]

    Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963

    [42]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [43]
    [44]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [45]
    [46]
    [47]

    Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885

    [48]
    [49]

    Chang C W, Okawa D 2006 Science 314 1121

    [50]
    [51]

    Gang Wu 2007 Phys. Rew. B 76 085424

    [52]

    Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301

    [53]
    [54]
    [55]

    Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211

  • [1] 杨静, 冯少蓉, 张涛, 牛旭平, 王荣, 李敏, 于润升, 曹兴忠, 王宝义. B位空位补偿型钐掺杂PZT(54/46)陶瓷中的缺陷分析及其对压电性能的影响.  , 2024, 73(7): 077701. doi: 10.7498/aps.73.20231872
    [2] 李耀隆, 李哲, 李松远, 张任良. 层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控.  , 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [3] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2021, (): . doi: 10.7498/aps.70.20211857
    [6] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [7] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质.  , 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [8] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [9] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质.  , 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [10] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [11] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响.  , 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [12] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [13] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [14] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性.  , 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [15] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析.  , 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [16] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [17] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究.  , 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [18] 陈青云, 孟川民, 卢铁城, 徐明, 胡又文. 中子嬗变掺杂前后Ge纳米晶的结构和性质.  , 2010, 59(9): 6473-6479. doi: 10.7498/aps.59.6473
    [19] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [20] 袁剑辉, 程玉民, 张振华. 空位结构缺陷对C纳米管弹性性质的影响.  , 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
计量
  • 文章访问数:  10117
  • PDF下载量:  1393
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-03
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回
Baidu
map