搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金银三层纳米管局域表面等离激元共振特性研究

丛超 吴大建 刘晓峻 李勃

引用本文:
Citation:

金银三层纳米管局域表面等离激元共振特性研究

丛超, 吴大建, 刘晓峻, 李勃

Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes

Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo
PDF
导出引用
  • 相对于单一金属纳米材料,二金属复合纳米材料具有更大的潜在应用价值.基于时域有限差分方法,研究了SiO2-Ag-Au和SiO2-Au-Ag二金属三层纳米管的消光光谱,并对其局域表面等离激元共振(Localized Surface Plasmon Resonance,LSPR)特性进行了分析.研究发现,内核尺寸变大将导致上述两种金属纳米管LSPR峰红移;内层金属及外层金属壳层厚度增大均会导致其LSPR峰蓝移.银壳厚度变化对纳米管LSPR的调制作用大于金壳厚度变化造成的影响.上述现象可以利用等离激元杂化理论及自由电子和振荡电子变化的竞争机制进行分析.
    The localized surface plasmon resonance (LSPR) properties of bimetallic gold and silver three-layered nanotubes such as SiO2-Ag-Au and SiO2-Au-Ag nanotubes have been investigated with the variations of Au or Ag shell thickness and size of the core by means of Finite Difference Time Domain (FDTD) method. With increase in the core size, it is found that the LSPR peaks show red-shift. We also observe with increasing the thickness of the Au or Ag shell that the LSPR peaks show blue-shift. Furthermore, the modulation of LSPR due to Ag shell is more significant compared with that due to Au shell. We have ascribed the variations of the LSPR peaks to the plasmon hybridization and the competition between the changes of conduction and oscillation electrons.
    • 基金项目: 国家自然科学基金(批准号: 11174113, 11074124, 11104319)和江苏省自然科学基金(批准号: BK2011542)和江苏高校优势学科建设工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174113, 11074124, 11104319), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011542), and the PAPD of Jiangsu Higher Education Institutions, China.
    [1]

    Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590

    [2]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Re-quicha A AG, Atwater H A 2001 Adv. Mater. 13 1501

    [3]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett.23 1331

    [4]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [5]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [6]

    Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters(Berlin: Springer)

    [7]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem.B 107 668

    [8]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R2008 Nano Lett. 8 2245

    [9]

    Wei H, Hao F, Huang Y Z, WangWZ, Nordlander P, Xu H X 2008Nano Lett. 8 2497

    [10]

    Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S2002 Langmuir 18 4460

    [11]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [12]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev.B 66 155431

    [13]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建、刘晓峻 2008 textbf{ 57 5138]

    [14]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 97 061904

    [15]

    Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431

    [16]

    Leveque G, Martin O J F 2006 Opt. Express 14 9971

    [17]

    Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313

    [18]

    Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002Nano Lett. 2 465

    [19]

    Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, ZayatsA V, Atkinson R, Pollard R J 2008 J. Phys. Condens. Matter 20362203

    [20]

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 60 046102]

    [21]

    Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109, 083540

    [22]

    Allain L R, Vo-Dinh T 2002 Anal. Chim. Acta 469 149

    [23]

    Hirsch L R, Jackson J B, Lee A, Halas N J, West J L 2003 Anal.Chem. 75 2377

    [24]

    Sershen S R, West J L 2000 J. Biomed. Mat. Res. 51 293

    [25]

    O’Neal D P, Hirsch L R, Halas N J, Paynea J D, West J L 2004Cancer Lett. 209 171

    [26]

    Lu L L, Wang H S, Zhou Y H, Xi S Q, Zhang H J, Hu J W, ZhaoB 2002 Chem. Commun. 2 144

    [27]

    Bruzzone S, Arrighini G P, Guidotti C 2003 Mater. Sci. Eng. C23 965

    [28]

    Zhu J 2005 Physica E 27 296

    [29]

    Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys.Lett. 75 1063

    [30]

    Grady N K, Halas N J, Nordlander P 2004 Chem. Phys. Lett. 399167.

    [31]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302419

  • [1]

    Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590

    [2]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Re-quicha A AG, Atwater H A 2001 Adv. Mater. 13 1501

    [3]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett.23 1331

    [4]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [5]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [6]

    Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters(Berlin: Springer)

    [7]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem.B 107 668

    [8]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R2008 Nano Lett. 8 2245

    [9]

    Wei H, Hao F, Huang Y Z, WangWZ, Nordlander P, Xu H X 2008Nano Lett. 8 2497

    [10]

    Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S2002 Langmuir 18 4460

    [11]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [12]

    Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev.B 66 155431

    [13]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建、刘晓峻 2008 textbf{ 57 5138]

    [14]

    Wu D J, Liu X J 2010 Appl. Phys. Lett. 97 061904

    [15]

    Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431

    [16]

    Leveque G, Martin O J F 2006 Opt. Express 14 9971

    [17]

    Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313

    [18]

    Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002Nano Lett. 2 465

    [19]

    Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, ZayatsA V, Atkinson R, Pollard R J 2008 J. Phys. Condens. Matter 20362203

    [20]

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 60 046102]

    [21]

    Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109, 083540

    [22]

    Allain L R, Vo-Dinh T 2002 Anal. Chim. Acta 469 149

    [23]

    Hirsch L R, Jackson J B, Lee A, Halas N J, West J L 2003 Anal.Chem. 75 2377

    [24]

    Sershen S R, West J L 2000 J. Biomed. Mat. Res. 51 293

    [25]

    O’Neal D P, Hirsch L R, Halas N J, Paynea J D, West J L 2004Cancer Lett. 209 171

    [26]

    Lu L L, Wang H S, Zhou Y H, Xi S Q, Zhang H J, Hu J W, ZhaoB 2002 Chem. Commun. 2 144

    [27]

    Bruzzone S, Arrighini G P, Guidotti C 2003 Mater. Sci. Eng. C23 965

    [28]

    Zhu J 2005 Physica E 27 296

    [29]

    Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys.Lett. 75 1063

    [30]

    Grady N K, Halas N J, Nordlander P 2004 Chem. Phys. Lett. 399167.

    [31]

    Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302419

  • [1] 韩非, 江舟, 王晨, 周华, 沈向前. 金属纳米图案对钙钛矿电池的光学增强.  , 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控.  , 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [4] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究.  , 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [5] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究.  , 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [6] 黄运欢, 李璞. 金纳米棒复合体的消光特性.  , 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [7] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析.  , 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [8] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法.  , 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [9] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式.  , 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [10] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法.  , 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [11] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法.  , 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [12] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [13] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析.  , 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [14] 魏 兵, 葛德彪, 王 飞. 一种处理色散介质问题的通用时域有限差分方法.  , 2008, 57(10): 6290-6297. doi: 10.7498/aps.57.6290
    [15] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析.  , 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [16] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析.  , 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析.  , 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [19] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [20] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析.  , 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
计量
  • 文章访问数:  7472
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-25
  • 修回日期:  2011-05-19
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map