-
为提高微晶硅薄膜的纵向结晶性能, 在甚高频等离子体增强化学气相沉积技术的基础上, 采用过渡参数缓变和两步法相结合的方法在普通玻璃衬底上高速沉积薄膜. 当功率密度为2.1 W/cm2, 硅烷浓度在6%和9.6%之间变化时, 从薄膜方向和玻璃方向测算的Raman晶化率的差异维持在2%以内. 硅烷浓度为9.6%时, 薄膜沉积速率可达3.43 nm/s, 从薄膜方向和玻璃方向测算的Raman晶化率分别为50%和48%, 差异的相对值仅为4.0%. 合理控制过渡阶段的参数变化, 可使两个方向的Raman晶化率差值下降到一个百分点. 表明采用新方法制备薄膜, 不仅可以抑制非晶孵化层的形成, 改善微晶硅薄膜的纵向结构, 还为制备优质薄膜提供了较宽的参数变化空间.
-
关键词:
- 微晶硅薄膜 /
- 非晶孵化层 /
- 高速沉积 /
- 甚高频等离子体增强化学气相沉积
To improve the uniformity of crystalline volume fraction (Xc) along the deposition direction in microcrystalline silicon films, very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD), combined with parameters smoothly changed two-step method, is adopted to prepare high-rate microcrystalline silicon films on glass subtrates. With a power density of 2.1 W/cm2, silane concentration between 6% and 9.6%, a difference between Xc measured in the film direction and that in the glass direction, is just 2 percent. With a silane concentration of 9.6%, Xc, measured in the film direction and the glass direction respectively reach 50% and 48%, close to 2 percent, relative difference just 4 percent, whereas the deposition rate reaches 3.43 nm/s. What is more, Xc difference can reduce to 1 percent by strictly controlling the transitional parameters. It shows that the new deposition method not only curb the incubation layers and improve the vertical structure, but also give a larger range for film optimizing in the future.-
Keywords:
- microcrystalline silicon thin film /
- amorphous incubation layer /
- high-rate growth /
- very high frequency plasma enhanced vapor deposition
[1] Zhang X D, Zheng X X, Wang G H, Xu S Z, Yue Q, Lin Q, Wei C C, Sun J, Zhang D K, Xiong S Z, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 8231 (in Chinese) [张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖 2010 59 8231]
[2] Meillaud F, Feltrin A, Despeisse M, Haug F J, Dominé D, Python M, Söderström T, Cuony P, Boccard M, Nicolay S, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 127
[3] Bugnon G, Feltrin A, Bartlome R, Strahm B, Bronneberg A C, Parascandolo G, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 134
[4] Takashiri M, Tabuchi T 2010 Surf. Coat. Tech. 204 3525
[5] Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner H 1998 Philosoph. Mag. A 77 1447
[6] Verkerk A, Rath J K, Schropp R 2010 Phys. Status Solid. A 207 530
[7] Suzuki S, Kondo M, Matsuda A 2002 Sol. Energy Mater. Sol. Cells 74 489
[8] Strahm B, Howling A A, Sansonnens L, Hollenstein C, Kroll U, Meier J, Ellert C, Feitknecht L, Ballif C 2007 Sol. Energ. Mater. Sol. Cells 91 495
[9] Guo Q C, Geng X H, Sun J, Wei C C, Han X Y, Zhang X D, Zhao Y 2007 Acta Phys. Sin. 56 2790 (in Chinese) [郭群超, 耿新华, 孙建, 魏长春, 韩晓艳, 张晓丹, 赵颖 2007 56 2790]
[10] Han X Y, Hou G F, Zhang X D,Wei C C, Li G J, Zhang D K, Chen X L, Sun J, Zhang J J, Zhao Y, Geng X H 2009 Chin. Phys. B 18 3563
[11] Zhang X D, Zheng X X, Wang G H, Zhao Y 2011 Appl. Surf. Sci. 257 3014
[12] Yue H Y, Wu A M, Zhang X Y, Li T J 2011 J. Cryst. Growth 322 1
[13] Mao H Y, Wuu D S, Wu B R, Lo S Y, Horng R H 2011 Mater. Chem. Phys. 126 665
[14] Mai Y, Klein S, Carius R, Stiebig H, Geng X, Finger F 2005 Appl. Phys. Lett. 87 073503
[15] Gao X Y, Li R, Chen Y S, Lu J X, Liu P, Feng T H, Wang H J, Yang S E 2006 Acta Phys. Sin. 55 2790 (in Chinese) [郜小勇, 李瑞, 陈永生, 卢景霄, 刘萍, 冯团辉, 王红娟, 杨仕娥 2006 55 0098]
[16] Collins R W, Ferlauto A S, Ferreira G M, Chen C, Koh J, Koval R J, Lee Y, Pearce J M, Wronski C R 2003 Sol. Energy Mater. Sol. Cells 78 143
[17] Nakamura K, Yoshino K, Takeoka S, Shimizu I 1995 Jpn. J. Appl. Phys. 34 442
[18] Sobajima Y, Nishino M, Fukumori T, Kurihara M, Higuchi T, Nakano S, Toyama T, Okamoto H 2009 Sol. Energy Mater. Sol. Cells 93 980
[19] Tsai C C, Anderson G B, Thompson R, Wacker B 1998 J. Non- Cryst. Solids 114 151
[20] Graf U, Meier J, Kroll U, Bailat J, Droz C, Vallat-Sauvain E, Shah A 2003 Thin Solid Films 427 37
[21] Guo X J, Lu J X, Wen S T, Yang G, Chen Y S, Zhang Q F, Gu J H 2008 J. Semiconduct. 29 1160 (in Chinese) [郭学军, 卢景霄, 文书堂, 杨根, 陈永生, 张庆丰, 谷锦华 2008 半导体学报 29 1160]
-
[1] Zhang X D, Zheng X X, Wang G H, Xu S Z, Yue Q, Lin Q, Wei C C, Sun J, Zhang D K, Xiong S Z, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 8231 (in Chinese) [张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖 2010 59 8231]
[2] Meillaud F, Feltrin A, Despeisse M, Haug F J, Dominé D, Python M, Söderström T, Cuony P, Boccard M, Nicolay S, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 127
[3] Bugnon G, Feltrin A, Bartlome R, Strahm B, Bronneberg A C, Parascandolo G, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 134
[4] Takashiri M, Tabuchi T 2010 Surf. Coat. Tech. 204 3525
[5] Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner H 1998 Philosoph. Mag. A 77 1447
[6] Verkerk A, Rath J K, Schropp R 2010 Phys. Status Solid. A 207 530
[7] Suzuki S, Kondo M, Matsuda A 2002 Sol. Energy Mater. Sol. Cells 74 489
[8] Strahm B, Howling A A, Sansonnens L, Hollenstein C, Kroll U, Meier J, Ellert C, Feitknecht L, Ballif C 2007 Sol. Energ. Mater. Sol. Cells 91 495
[9] Guo Q C, Geng X H, Sun J, Wei C C, Han X Y, Zhang X D, Zhao Y 2007 Acta Phys. Sin. 56 2790 (in Chinese) [郭群超, 耿新华, 孙建, 魏长春, 韩晓艳, 张晓丹, 赵颖 2007 56 2790]
[10] Han X Y, Hou G F, Zhang X D,Wei C C, Li G J, Zhang D K, Chen X L, Sun J, Zhang J J, Zhao Y, Geng X H 2009 Chin. Phys. B 18 3563
[11] Zhang X D, Zheng X X, Wang G H, Zhao Y 2011 Appl. Surf. Sci. 257 3014
[12] Yue H Y, Wu A M, Zhang X Y, Li T J 2011 J. Cryst. Growth 322 1
[13] Mao H Y, Wuu D S, Wu B R, Lo S Y, Horng R H 2011 Mater. Chem. Phys. 126 665
[14] Mai Y, Klein S, Carius R, Stiebig H, Geng X, Finger F 2005 Appl. Phys. Lett. 87 073503
[15] Gao X Y, Li R, Chen Y S, Lu J X, Liu P, Feng T H, Wang H J, Yang S E 2006 Acta Phys. Sin. 55 2790 (in Chinese) [郜小勇, 李瑞, 陈永生, 卢景霄, 刘萍, 冯团辉, 王红娟, 杨仕娥 2006 55 0098]
[16] Collins R W, Ferlauto A S, Ferreira G M, Chen C, Koh J, Koval R J, Lee Y, Pearce J M, Wronski C R 2003 Sol. Energy Mater. Sol. Cells 78 143
[17] Nakamura K, Yoshino K, Takeoka S, Shimizu I 1995 Jpn. J. Appl. Phys. 34 442
[18] Sobajima Y, Nishino M, Fukumori T, Kurihara M, Higuchi T, Nakano S, Toyama T, Okamoto H 2009 Sol. Energy Mater. Sol. Cells 93 980
[19] Tsai C C, Anderson G B, Thompson R, Wacker B 1998 J. Non- Cryst. Solids 114 151
[20] Graf U, Meier J, Kroll U, Bailat J, Droz C, Vallat-Sauvain E, Shah A 2003 Thin Solid Films 427 37
[21] Guo X J, Lu J X, Wen S T, Yang G, Chen Y S, Zhang Q F, Gu J H 2008 J. Semiconduct. 29 1160 (in Chinese) [郭学军, 卢景霄, 文书堂, 杨根, 陈永生, 张庆丰, 谷锦华 2008 半导体学报 29 1160]
计量
- 文章访问数: 6826
- PDF下载量: 405
- 被引次数: 0