搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

领结形中空表面等离子体波导的传输特性

贾智鑫 段欣 吕婷婷 郭亚楠 薛文瑞

引用本文:
Citation:

领结形中空表面等离子体波导的传输特性

贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞

Propagation properties of a surface plasmonicwaveguide with a bowtie air cores

Jia Zhi-Xin, Duan Xin, Lü Ting-Ting, Guo Ya-Nan, Xue Wen-Rui
PDF
导出引用
  • 设计了一种领结形中空表面等离子体波导.采用频域有限差分法,对这种波导所支持的基模的能流密度分布、有效折射率、传播长度和模式面积随几何结构参数和工作波长的依赖关系进行了分析.结果表明,沿纵向的能流主要分布在两个上下突起所形成的中间区域.通过调整几何参数及工作波长,可以调节模式的有效折射率、传播长度和模式面积.在工作波长确定的条件下,有效折射率随突起半径的增大呈减小趋势,而传播长度和模式面积则随着突起半径的增大呈增大趋势,四个角上的圆弧半径对波导的传输特性有微调作用,左右扇形区域的半径对波导的传输特性有较明显
    A kind of surface plasmonic waveguide with a bowtie shaped air core was designed. The dependence of distribution of longitudinal energy flux density, effective index and propagation length of the fundamental mode supported by this waveguide on geometrical parameters and working wavelength were analyzed using the finite-difference frequency-domain (FDFD) method. Results show that the longitudinal energy flux density distributes mainly in the center region which is formed by the top and the bottom ridge. The effective index and propagation length of the fundamental mode can be adjusted by the geometric parameters as well as the working wavelength. At a given working wavelength, the effective index decreases as the radius of ridge increases, meanwhile propagation length and mode area of the fundamental mode increase as radius of ridge increases. The geometric parameter of radius of circles at four corner can affect the propagation properties slightly. The radius of sectors on both sides can effect propagation properties obviously. With given geometric parameters, relative to the case of λ=705.0 nm, in the case of larger λ, the area of field distribution is larger, and the size of the contact area of field and metallic surface is also larger, then the interaction of field and silver is weaker, and the effective index becomes smaller, so the propagation length becomes larger. The possibility of applying this kind of surface plasmonic waveguide to the field of sensors was discussed.
    • 基金项目: 国家基础科学人才培养基金(批准号:J0730317)和山西省自然科学基金(批准号:2010011003-1)资助的课题.
    [1]

    Barnes W L , Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ozbay E 2006 Science 311 189

    [3]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [4]

    Maier S A 2006 IEEE J. Sel. Topics Quantum Electron. 12 1671

    [5]

    Economou E N 1969 Phys. Rev. 182 539

    [6]

    Berini P 1999 Opt. Lett. 24 1011

    [7]

    Jung J, Sondergaard T, Bozhevolnyi S I 2007 Phys. Rev. B 76 035434

    [8]

    Guo J, Adato R 2008 Opt. Express 16 1232

    [9]

    Tanaka K, Tanaka M 2003 Appl. Phys. Lett. 82 1158

    [10]

    Kusunoki F, Yotsuya T, Takahara J, Kobayashi T 2005 Appl. Phys. Lett. 86 211101

    [11]

    Gordon R, Brolo A G 2005 Opt. Express 13 1933

    [12]

    Zhang H X,Gu Y,Gong Q H 2008 Chin. Phys. B 17 2567

    [13]

    Pile D F P, Ogawa T, Gramotnev D K, Matsuzaki Y, Vernon K C, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M 2005 Appl. Phys. Lett. 87 261114

    [14]

    Liu L, Han Z, He S, 2005 Opt. Express 13 6645

    [15]

    Xue W R, Guo Y N, Zhang W M 2009 Chin. Phys. B 18 2529

    [16]

    Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M, Matsuo S 2005 Appl. Phys. Lett. 87 061106

    [17]

    Boltasseva A, Volkov V S, Nielsen R B, Moreno E, Rodrigo S G, Bozhevolnyi S I 2008 Opt. Express 16 5252

    [18]

    Ogawa T, Pile D F P, Okamoto T, Haraguchi M, Fukui M, Gramotnev D K 2008 J. Appl. Phys. 104 033102

    [19]

    Lu J Q, Maradudin A A 1990 Phys. Rev. B 42 17 11159

    [20]

    Chen S L, Shakya J, Lipson M 2006,Opt. Lett. 31 14 2133

    [21]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [22]

    Lee I, Jung J, Park J, Kim H, Lee B 2007 Opt. Express 15 16596

    [23]

    Xue W R, Guo Y N, Zhang J, Zhang W M 2009 J. Lightwave Technol 27 2634

    [24]

    Arbel D, Orenstein M 2008 Opt. Express 16 3114

    [25]

    Xue W R, Guo Y N, Li P, and Zhang W M 2008 Opt. Express 16 10710

    [26]

    Guo Y N, Xue W R, Yang R C, Zhang W M 2009 Opt. Express 17 11822

    [27]

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese)[郭亚楠、薛文瑞、张文梅 2009 58 4168]

    [28]

    Xue W R, Guo Y N, Zhang W M 2010 Chin. Phys. B 19 017302

    [29]

    Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405

    [30]

    Krasavin A V, Zayats A V 2007 Appl. Phys. Lett. 90 211101

    [31]

    Steinberger B, Hohenau A, Ditlbacher H, Stepanov A L, Drezet A, Aussenegg F R, Leitner A, Krenn J R 2006 Appl. Phys. Lett. 88 094104

    [32]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331

    [33]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [34]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝 鹏、吴一辉、张 平 2010 59 6532]

    [35]

    Wu Y C, Gu Z 2008 Acta Phys. Sin. 57 2295 (in Chinese) [吴英才、顾 铮 2008 理学报 57 2295]

    [36]

    Zhu Z M, Brown T G 2002 Opt. Express 10 853

    [37]

    Guo S P, Wu F, Albin S, Tai H, Rogowski R S 2004 Opt. Express 12 3341

    [38]

    Yu C P, Chang H C 2004 Opt. Express 12 6165

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Weber M J 2002 Handbook of optical materials(New York:CRC Press)p389

    [41]

    Homola J, Piliarik M 2006 Springer series on chemical sensors and biosensors (Berlin:Springer) 4 p45

  • [1]

    Barnes W L , Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ozbay E 2006 Science 311 189

    [3]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [4]

    Maier S A 2006 IEEE J. Sel. Topics Quantum Electron. 12 1671

    [5]

    Economou E N 1969 Phys. Rev. 182 539

    [6]

    Berini P 1999 Opt. Lett. 24 1011

    [7]

    Jung J, Sondergaard T, Bozhevolnyi S I 2007 Phys. Rev. B 76 035434

    [8]

    Guo J, Adato R 2008 Opt. Express 16 1232

    [9]

    Tanaka K, Tanaka M 2003 Appl. Phys. Lett. 82 1158

    [10]

    Kusunoki F, Yotsuya T, Takahara J, Kobayashi T 2005 Appl. Phys. Lett. 86 211101

    [11]

    Gordon R, Brolo A G 2005 Opt. Express 13 1933

    [12]

    Zhang H X,Gu Y,Gong Q H 2008 Chin. Phys. B 17 2567

    [13]

    Pile D F P, Ogawa T, Gramotnev D K, Matsuzaki Y, Vernon K C, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M 2005 Appl. Phys. Lett. 87 261114

    [14]

    Liu L, Han Z, He S, 2005 Opt. Express 13 6645

    [15]

    Xue W R, Guo Y N, Zhang W M 2009 Chin. Phys. B 18 2529

    [16]

    Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M, Matsuo S 2005 Appl. Phys. Lett. 87 061106

    [17]

    Boltasseva A, Volkov V S, Nielsen R B, Moreno E, Rodrigo S G, Bozhevolnyi S I 2008 Opt. Express 16 5252

    [18]

    Ogawa T, Pile D F P, Okamoto T, Haraguchi M, Fukui M, Gramotnev D K 2008 J. Appl. Phys. 104 033102

    [19]

    Lu J Q, Maradudin A A 1990 Phys. Rev. B 42 17 11159

    [20]

    Chen S L, Shakya J, Lipson M 2006,Opt. Lett. 31 14 2133

    [21]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [22]

    Lee I, Jung J, Park J, Kim H, Lee B 2007 Opt. Express 15 16596

    [23]

    Xue W R, Guo Y N, Zhang J, Zhang W M 2009 J. Lightwave Technol 27 2634

    [24]

    Arbel D, Orenstein M 2008 Opt. Express 16 3114

    [25]

    Xue W R, Guo Y N, Li P, and Zhang W M 2008 Opt. Express 16 10710

    [26]

    Guo Y N, Xue W R, Yang R C, Zhang W M 2009 Opt. Express 17 11822

    [27]

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese)[郭亚楠、薛文瑞、张文梅 2009 58 4168]

    [28]

    Xue W R, Guo Y N, Zhang W M 2010 Chin. Phys. B 19 017302

    [29]

    Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405

    [30]

    Krasavin A V, Zayats A V 2007 Appl. Phys. Lett. 90 211101

    [31]

    Steinberger B, Hohenau A, Ditlbacher H, Stepanov A L, Drezet A, Aussenegg F R, Leitner A, Krenn J R 2006 Appl. Phys. Lett. 88 094104

    [32]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331

    [33]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [34]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝 鹏、吴一辉、张 平 2010 59 6532]

    [35]

    Wu Y C, Gu Z 2008 Acta Phys. Sin. 57 2295 (in Chinese) [吴英才、顾 铮 2008 理学报 57 2295]

    [36]

    Zhu Z M, Brown T G 2002 Opt. Express 10 853

    [37]

    Guo S P, Wu F, Albin S, Tai H, Rogowski R S 2004 Opt. Express 12 3341

    [38]

    Yu C P, Chang H C 2004 Opt. Express 12 6165

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Weber M J 2002 Handbook of optical materials(New York:CRC Press)p389

    [41]

    Homola J, Piliarik M 2006 Springer series on chemical sensors and biosensors (Berlin:Springer) 4 p45

  • [1] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇.  , 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [2] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射.  , 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [3] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [4] 张梦若, 陈开鑫. 一种简单精准的渐变折射率分布光波导分析方法.  , 2015, 64(14): 144205. doi: 10.7498/aps.64.144205
    [5] 孙运利, 王昌辉, 乐孜纯. 基于微流控光学可调谐的渐变折射率特性研究.  , 2014, 63(15): 154701. doi: 10.7498/aps.63.154701
    [6] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度.  , 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [7] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析.  , 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [8] 李杰, 朱京平. 光波导短程透镜加工容限误差研究.  , 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [9] 王珏, 涂成厚, 张双根, 吕福云. 基于飞秒激光写制波导的PPKTP晶体倍频实验研究.  , 2010, 59(1): 307-310. doi: 10.7498/aps.59.307
    [10] 陈兆震, 徐则达. 在一种新的聚合物材料上刻写正弦相位波导光栅及其特性研究.  , 2010, 59(5): 3264-3272. doi: 10.7498/aps.59.3264
    [11] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性.  , 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [12] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析.  , 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [13] 曾维友, 谢 康, 姜海明, 陈 凯. 基于TE-TM模变换的新型相位自补偿磁光隔离器.  , 2008, 57(6): 3607-3612. doi: 10.7498/aps.57.3607
    [14] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 微环耦合谐振光波导中的色散控制模型与数值仿真.  , 2008, 57(10): 6400-6403. doi: 10.7498/aps.57.6400
    [15] 刘 丹, 马仁敏, 王菲菲, 张增星, 张振生, 张学进, 王 笑, 白永强, 朱 星, 戴 伦, 章 蓓. 纳米集成光路中的光源、光波导和光增强.  , 2008, 57(1): 371-381. doi: 10.7498/aps.57.371
    [16] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [17] 徐宏来, 张 鹏, 赵建林, 高瑀含, 叶知隽, 杨德兴. 会聚激光扫描铌酸锂晶体写入光波导时的最佳曝光间距.  , 2006, 55(6): 3100-3105. doi: 10.7498/aps.55.3100
    [18] 余和军, 夏金松, 余金中. 一种模拟倾斜折射率界面光波导的新方法.  , 2006, 55(3): 1023-1028. doi: 10.7498/aps.55.1023
    [19] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅.  , 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [20] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计.  , 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
计量
  • 文章访问数:  9110
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-11
  • 修回日期:  2010-09-14
  • 刊出日期:  2011-05-15

/

返回文章
返回
Baidu
map