搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dicke模型的量子经典对应关系

宋立军 严冬 盖永杰 王玉波

引用本文:
Citation:

Dicke模型的量子经典对应关系

宋立军, 严冬, 盖永杰, 王玉波

Relations of classical-quantum correspondencein Dicke model

Wang Yu-Bo, Song Li-Jun, Yan Dong, Gai Yong-Jie
PDF
导出引用
  • 非旋波近似条件下Dicke模型表现为量子混沌动力学特征.在详细考察Dicke模型经典相空间结构特点的基础上,采用经典-量子"一对多"的思想,即经典相空间中的一点对应于量子体系两个初始相干态的演化,利用对两个初态量子纠缠动力学演化取统计平均的方法,得到了与经典相空间对应非常好的量子相空间结构.数值计算结果表明:经典混沌有利地促进系统两体纠缠的产生,平均纠缠可以作为量子混沌的标识,利用平均纠缠可以得到一种较好的量子动力学与经典相空间的对应关系.
    Dicke model displays quantum chaotic dynamic properties in the non-rotating wave approximation. On the basis of properties of the classical phase space of Dicke model, we employ the one-to-many notion, namely, evolution from one point on the classical phase space to two initial coherent states. Then we obtain a good quantum phase space, which corresponds to the classical one, by using the method of averaging the statistical entangled values of two initial states in the evolution. The numerical computation shows that classical chaos can promote the origination of bipartite entanglement, and simultaneously, the average entanglement can be regarded as the signature of quantum chaos. A good classica-quantum correspondence can be obtained by using the average entanglement.
    • 基金项目: 国家自然科学基金(批准号:10947019)、吉林省自然科学基金(批准号:20101514)和吉林省教育厅科技研究基金(批准号:2009237)资助的课题.
    [1]

    Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)

    [2]

    Haake F 1991 Quantum Signature of Chaos (Berlin:Springer-Verlag)

    [3]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [4]

    Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev.E 70 016217

    [5]

    Hou X W, Chen J H, Hu B 2004 Phys. Rev. A 69 042110

    [6]

    Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [7]

    Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [8]

    Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209

    [9]

    Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 0661 (in Chinese) [房永翠、杨志安、杨丽云 2008 57 0661]

    [10]

    Ouyang X C, Fang M F, Kang G D, Deng X J, Huang L Y 2010 Chin. Phys. B 19 030309

    [11]

    Zhang Y J, Xia Y J, Ren Y Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 0722 (in Chinese) [张英杰、夏云杰、任延琦、杜秀梅、刘玉玲 2009 58 0722]

    [12]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 0050 (in Chinese) [郭 亮、梁先庭 2009 58 0050]

    [13]

    Lu P, Wang S J 2009 Acta Phys. Sin. 58 5955 (in Chinese) [卢 鹏、王顺金 2009 58 5955]

    [14]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英、吴 炜 2009 58 5311]

    [15]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [16]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2006 Phys. Lett. A 353 216

    [17]

    Gorin T, Prosen T, Seligman T H, Znidaric M 2006 Phys. Rep. 435 33

    [18]

    Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 559

    [19]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [20]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严 冬、宋立军、陈殿伟 2009 58 3679]

    [21]

    Chaudhury S, Smith A, Anderson B E, Ghose S, Jessen P S 2009 Nature 461 768

    [22]

    Dicke R H 1954 Phys. Rev. 93 99

    [23]

    Zhang W M, Feng D H, Gilmore R 1990 Rev. Mod. Phys. 62 867

  • [1]

    Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)

    [2]

    Haake F 1991 Quantum Signature of Chaos (Berlin:Springer-Verlag)

    [3]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [4]

    Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev.E 70 016217

    [5]

    Hou X W, Chen J H, Hu B 2004 Phys. Rev. A 69 042110

    [6]

    Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [7]

    Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [8]

    Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209

    [9]

    Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 0661 (in Chinese) [房永翠、杨志安、杨丽云 2008 57 0661]

    [10]

    Ouyang X C, Fang M F, Kang G D, Deng X J, Huang L Y 2010 Chin. Phys. B 19 030309

    [11]

    Zhang Y J, Xia Y J, Ren Y Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 0722 (in Chinese) [张英杰、夏云杰、任延琦、杜秀梅、刘玉玲 2009 58 0722]

    [12]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 0050 (in Chinese) [郭 亮、梁先庭 2009 58 0050]

    [13]

    Lu P, Wang S J 2009 Acta Phys. Sin. 58 5955 (in Chinese) [卢 鹏、王顺金 2009 58 5955]

    [14]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英、吴 炜 2009 58 5311]

    [15]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [16]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2006 Phys. Lett. A 353 216

    [17]

    Gorin T, Prosen T, Seligman T H, Znidaric M 2006 Phys. Rep. 435 33

    [18]

    Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 559

    [19]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [20]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严 冬、宋立军、陈殿伟 2009 58 3679]

    [21]

    Chaudhury S, Smith A, Anderson B E, Ghose S, Jessen P S 2009 Nature 461 768

    [22]

    Dicke R H 1954 Phys. Rev. 93 99

    [23]

    Zhang W M, Feng D H, Gilmore R 1990 Rev. Mod. Phys. 62 867

计量
  • 文章访问数:  13005
  • PDF下载量:  1106
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-22
  • 修回日期:  2010-05-03
  • 刊出日期:  2011-01-05

/

返回文章
返回
Baidu
map