搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应

刘德 张红梅 贾秀敏

引用本文:
Citation:

对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应

刘德, 张红梅, 贾秀敏

Spin-polarized electron transport and magnetoresistance effect in symmetric parabolic-well magnetic tunneling junction

Jia Xiu-Min, Liu De, Zhang Hong-Mei
PDF
导出引用
  • 研究了两端具有铁磁接触的对称抛物势阱磁性隧道结(F/SPW/F)中自旋相关的隧穿概率和隧穿磁电阻,讨论了量子尺寸效应和Rashba 自旋轨道耦合作用对自旋极化输运特性的影响.研究结果表明:隧穿概率和隧穿磁电阻随抛物势阱宽度的增加发生周期性的振荡.抛物势阱深度的增加减小了隧穿概率和隧穿磁电阻的振荡频率.Rashba 自旋轨道耦合强度的增加加大了隧穿概率和隧穿磁电阻的振荡频率.隧穿概率和隧穿磁电阻的振幅和峰谷比强烈依赖于两铁磁电极中磁化方向的夹角.
    We investigated the spin-dependent transmission coefficient and tunneling magnetoresistance in symmetric parabolic-well with two ferromagnetic contacts (F/SPW/F). The quantum size effect and Rashba spin-orbit interaction are discussed simultaneously. The results indicate that the transmission coefficient and tunneling magnetoresistance are periodic function of the parabolic-well width. The oscillation frequencies of the transmission coefficient and tunneling magnetoresistance decrease with the increasing of the parabolic-well depth. The oscillation frequencies of the transmission coefficient and tunneling magnetoresistance increase with the increasing of the Rashba spin-orbit coupling strength. The amplitude and peak-to-valley ratio of the transmission coefficient and tunneling magnetoresistance are strongly dependent on the difference in orientations of the two magnetizations in the left and right ferromagnets.
    • 基金项目: 国家自然科学基金(批准号:10674040 和10974043),河北师范大学博士基金(批准号:L2009B02 ) 和河北科技大学基金(批准号:XL200825 ) 资助的课题.
    [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Du J, Zhang P, Liu J H, Li J L, Li Y X 2008 Acta Phys. Sin. 57 7221 (in Chinese) [杜 坚、 张 鹏、 刘继红、 李金亮、 李玉现 2008 57 7221]

    [3]

    Du J, Li C G, Qin F 2009 Acta Phys. Sin. 58 3448 (in Chinese) [杜 坚、 李春光、 秦 芳 2009 58 3448]

    [4]

    Du J, Wang S X, Yang S M 2009 Acta Phys. Sin. 58 7926 (in Chinese) [杜 坚、 王素新、 杨淑敏 2009 58 7926]

    [5]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2760 (in Chinese) [杜 坚、 王素新、 袁爱国 2010 59 2760]

    [6]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2767 (in Chinese) [杜 坚、 王素新、 袁爱国 2010 59 2767]

    [7]

    Moroz A V, Barnes C H W 1999 Phys. Rev. B 60 14272 Moroz A V, Samokhin K V, Barnes C H W 2000 Phys. Rev. Lett. 84 4164

    [8]

    Mireles F, Kirczenow G 2002 Phys. Rev. B 66 214415 Mireles F, Kirczenow G 2001 Phys. Rev. B 64 024426

    [9]

    Mireles F, Kirczenow G 2002 Europhys Lett. 59 107

    [10]

    Schpers Th, Nitta J, Heersche H B, Takayanagi H 2001 Phys. Rev. B 64 125314

    [11]

    Matsuyama T, Hu C M, Grundler D, Meier G, Merkt U 2002 Phys. Rev. B 65 155322

    [12]

    Moser J, Zenger M, Gerl C, Schuh D, Meier R, Chen P, Bayreuther G, Wegscheider W, Weiss D, Lai C H, Huang R T, Kosuth M, Ebert H 2006 Appl. Phys. Lett. 89 162106

    [13]

    Julliere M 1975 Phys. Lett. A 54 225

    [14]

    Zhang X D, Li B Z, Sun G, Pu F C 1997 Phys. Rev. B 56 5484

    [15]

    Zhang X D, Li B Z, Zhang W S, Pu F C 1998 Phys. Rev. B 57 1090

    [16]

    Xie Z W, Li B Z 2002 Acta Phys. Sin. 51 399 (in Chinese) [谢征微、 李伯藏 2002 51 399]

    [17]

    Jin L, Zhu L, Li L, Xie Z W 2009 Acta Phys. Sin. 58 8577 (in Chinese) [金 莲、 朱 林、 李 玲、 谢征微 2009 58 8577]

    [18]

    Miller R C, Gossard A C, Kleinman D A, Munteanu O 1984 Phys. Rev. B 29 3740

    [19]

    Shayegan M, Sajoto T, Santos M, Silvestre C 1988 Appl. Phys. Lett. 53 791

    [20]

    Yuen W P 1993 Phys. Rev. B 48 17316

    [21]

    Chiba D, Akiba N, Matsukura F, Ohno Y, Ohno H 2000 Appl. Phys. Lett. 77 1873

    [22]

    Johnson M 1998 Phys. Rev. B 58 9635 Johnson M, Silsbee R H 1988 Phys. Rev. B 37 5326

    [23]

    Hu C M, Matsuyama T 2001 Phys. Rev. Lett. 87 066803

    [24]

    Herling G H, Rustgi M L 1992 J. Appl. Phys. 71 796

    [25]

    Qi X H, Kong X J, Liu J J 1998 Phys. Rev. B 58 10578

    [26]

    Wu H C, Guo Y, Chen X Y,Gu B L 2003 J. Appl. Phys. 93 5316

    [27]

    Li Y X, GuoY, Li B Z 2005 Phys. Rev. B 71 012406

    [28]

    Liu D, Kong X J 2008 J. Appl. Phys. 104 023707

    [29]

    Liu D, Kong X J 2009 J. Appl. Phys. 105 043703

    [30]

    Büttiker M 1993 J. Phys.: Condens Matter 5 9361

    [31]

    Christen T, Büttiker M 1996 Phys. Rev. Lett. 77 143

    [32]

    Zenger M, Moser J, Wegscheider W, Weiss D, Dietl T 2004 J. Appl. Phys. 96 2400

    [33]

    Liu D, Zhang H M 2008 Mod. Phys. Lett. B 22 2667

    [34]

    Shinobu Ohya, Pham Nam Hai, Masaaki Tanaka 2005 Appl. Phys. Lett. 87 012105

    [35]

    Pham Nam Hai, Masafumi Yokoyama, Shinobu Ohya, Masaaki Tanaka 2006 Appl. Phys. Lett. 89 242106

  • [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Du J, Zhang P, Liu J H, Li J L, Li Y X 2008 Acta Phys. Sin. 57 7221 (in Chinese) [杜 坚、 张 鹏、 刘继红、 李金亮、 李玉现 2008 57 7221]

    [3]

    Du J, Li C G, Qin F 2009 Acta Phys. Sin. 58 3448 (in Chinese) [杜 坚、 李春光、 秦 芳 2009 58 3448]

    [4]

    Du J, Wang S X, Yang S M 2009 Acta Phys. Sin. 58 7926 (in Chinese) [杜 坚、 王素新、 杨淑敏 2009 58 7926]

    [5]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2760 (in Chinese) [杜 坚、 王素新、 袁爱国 2010 59 2760]

    [6]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2767 (in Chinese) [杜 坚、 王素新、 袁爱国 2010 59 2767]

    [7]

    Moroz A V, Barnes C H W 1999 Phys. Rev. B 60 14272 Moroz A V, Samokhin K V, Barnes C H W 2000 Phys. Rev. Lett. 84 4164

    [8]

    Mireles F, Kirczenow G 2002 Phys. Rev. B 66 214415 Mireles F, Kirczenow G 2001 Phys. Rev. B 64 024426

    [9]

    Mireles F, Kirczenow G 2002 Europhys Lett. 59 107

    [10]

    Schpers Th, Nitta J, Heersche H B, Takayanagi H 2001 Phys. Rev. B 64 125314

    [11]

    Matsuyama T, Hu C M, Grundler D, Meier G, Merkt U 2002 Phys. Rev. B 65 155322

    [12]

    Moser J, Zenger M, Gerl C, Schuh D, Meier R, Chen P, Bayreuther G, Wegscheider W, Weiss D, Lai C H, Huang R T, Kosuth M, Ebert H 2006 Appl. Phys. Lett. 89 162106

    [13]

    Julliere M 1975 Phys. Lett. A 54 225

    [14]

    Zhang X D, Li B Z, Sun G, Pu F C 1997 Phys. Rev. B 56 5484

    [15]

    Zhang X D, Li B Z, Zhang W S, Pu F C 1998 Phys. Rev. B 57 1090

    [16]

    Xie Z W, Li B Z 2002 Acta Phys. Sin. 51 399 (in Chinese) [谢征微、 李伯藏 2002 51 399]

    [17]

    Jin L, Zhu L, Li L, Xie Z W 2009 Acta Phys. Sin. 58 8577 (in Chinese) [金 莲、 朱 林、 李 玲、 谢征微 2009 58 8577]

    [18]

    Miller R C, Gossard A C, Kleinman D A, Munteanu O 1984 Phys. Rev. B 29 3740

    [19]

    Shayegan M, Sajoto T, Santos M, Silvestre C 1988 Appl. Phys. Lett. 53 791

    [20]

    Yuen W P 1993 Phys. Rev. B 48 17316

    [21]

    Chiba D, Akiba N, Matsukura F, Ohno Y, Ohno H 2000 Appl. Phys. Lett. 77 1873

    [22]

    Johnson M 1998 Phys. Rev. B 58 9635 Johnson M, Silsbee R H 1988 Phys. Rev. B 37 5326

    [23]

    Hu C M, Matsuyama T 2001 Phys. Rev. Lett. 87 066803

    [24]

    Herling G H, Rustgi M L 1992 J. Appl. Phys. 71 796

    [25]

    Qi X H, Kong X J, Liu J J 1998 Phys. Rev. B 58 10578

    [26]

    Wu H C, Guo Y, Chen X Y,Gu B L 2003 J. Appl. Phys. 93 5316

    [27]

    Li Y X, GuoY, Li B Z 2005 Phys. Rev. B 71 012406

    [28]

    Liu D, Kong X J 2008 J. Appl. Phys. 104 023707

    [29]

    Liu D, Kong X J 2009 J. Appl. Phys. 105 043703

    [30]

    Büttiker M 1993 J. Phys.: Condens Matter 5 9361

    [31]

    Christen T, Büttiker M 1996 Phys. Rev. Lett. 77 143

    [32]

    Zenger M, Moser J, Wegscheider W, Weiss D, Dietl T 2004 J. Appl. Phys. 96 2400

    [33]

    Liu D, Zhang H M 2008 Mod. Phys. Lett. B 22 2667

    [34]

    Shinobu Ohya, Pham Nam Hai, Masaaki Tanaka 2005 Appl. Phys. Lett. 87 012105

    [35]

    Pham Nam Hai, Masafumi Yokoyama, Shinobu Ohya, Masaaki Tanaka 2006 Appl. Phys. Lett. 89 242106

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器.  , 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [2] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能.  , 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [3] 张亚君, 蔡佳林, 乔亚, 曾中明, 袁喆, 夏钶. 基于磁性隧道结的群体编码实现无监督聚类.  , 2022, 71(14): 148506. doi: 10.7498/aps.71.20220252
    [4] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥. 基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较.  , 2022, 71(23): 238502. doi: 10.7498/aps.71.20221278
    [5] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [6] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究.  , 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [7] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [8] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿.  , 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [9] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性.  , 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [10] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻.  , 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [11] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究.  , 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [12] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究.  , 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [13] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究.  , 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [14] 于敦波, 丰家峰, 杜永胜, 韩秀峰, 严 辉, 应启明, 张国成. 成分调制的La1-xSrxMnO3复合隧道结.  , 2005, 54(10): 4903-4908. doi: 10.7498/aps.54.4903
    [15] 曾中明, 韩秀峰, 杜关祥, 詹文山, 王 勇, 张 泽. 双势垒磁性隧道结的磁电阻效应及其在自旋晶体管中的应用.  , 2005, 54(7): 3351-3356. doi: 10.7498/aps.54.3351
    [16] 李飞飞, 张谢群, 杜关祥, 王天兴, 曾中明, 魏红祥, 韩秀峰. 高磁电阻磁性隧道结的几种微制备方法研究.  , 2005, 54(8): 3831-3838. doi: 10.7498/aps.54.3831
    [17] 由 臣, 赵燕平, 金恩姬, 李飞飞, 王天兴, 曾中明, 彭子龙. 利用金属掩模法制备钉扎型磁性隧道结.  , 2004, 53(8): 2741-2745. doi: 10.7498/aps.53.2741
    [18] 王天兴, 魏红祥, 李飞飞, 张爱国, 曾中明, 詹文山, 韩秀峰. 4英寸热氧化硅衬底上磁性隧道结的微制备.  , 2004, 53(11): 3895-3901. doi: 10.7498/aps.53.3895
    [19] 刘彦欣, 王永昌, 杜少毅. 单电子三势垒隧穿结I-V特性研究.  , 2004, 53(8): 2734-2740. doi: 10.7498/aps.53.2734
    [20] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法.  , 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
计量
  • 文章访问数:  9279
  • PDF下载量:  1134
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-01
  • 修回日期:  2010-05-05
  • 刊出日期:  2011-01-15

/

返回文章
返回
Baidu
map